This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfidmadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummptfidmadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsummptfidmadd.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummptfidmadd.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| gsummptfidmadd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) | ||
| gsummptfidmadd.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ 𝐵 ) | ||
| gsummptfidmadd.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | ||
| gsummptfidmadd.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) | ||
| Assertion | gsummptfidmadd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 + 𝐷 ) ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfidmadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummptfidmadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsummptfidmadd.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsummptfidmadd.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 5 | gsummptfidmadd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) | |
| 6 | gsummptfidmadd.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ 𝐵 ) | |
| 7 | gsummptfidmadd.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 8 | gsummptfidmadd.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) | |
| 9 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 10 | 7 | a1i | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 11 | 8 | a1i | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) ) |
| 12 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 13 | 7 4 5 12 | fsuppmptdm | ⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝐺 ) ) |
| 14 | 8 4 6 12 | fsuppmptdm | ⊢ ( 𝜑 → 𝐻 finSupp ( 0g ‘ 𝐺 ) ) |
| 15 | 1 9 2 3 4 5 6 10 11 13 14 | gsummptfsadd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 + 𝐷 ) ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |