This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For two locally isomorphic graphs G and H and a vertex A of G there is a bijection f mapping the closed neighborhood N of A onto the closed neighborhood M of ( FA ) , so that the mapped vertices of an edge { A , B } containing the vertex A is an edge in H . (Contributed by AV, 27-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrvtxedg.n | |- N = ( G ClNeighbVtx A ) |
|
| clnbgrvtxedg.i | |- I = ( Edg ` G ) |
||
| clnbgrvtxedg.k | |- K = { x e. I | x C_ N } |
||
| grlimedgclnbgr.m | |- M = ( H ClNeighbVtx ( F ` A ) ) |
||
| grlimedgclnbgr.j | |- J = ( Edg ` H ) |
||
| grlimedgclnbgr.l | |- L = { x e. J | x C_ M } |
||
| Assertion | grlimpredg | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxedg.n | |- N = ( G ClNeighbVtx A ) |
|
| 2 | clnbgrvtxedg.i | |- I = ( Edg ` G ) |
|
| 3 | clnbgrvtxedg.k | |- K = { x e. I | x C_ N } |
|
| 4 | grlimedgclnbgr.m | |- M = ( H ClNeighbVtx ( F ` A ) ) |
|
| 5 | grlimedgclnbgr.j | |- J = ( Edg ` H ) |
|
| 6 | grlimedgclnbgr.l | |- L = { x e. J | x C_ M } |
|
| 7 | 1 2 3 4 5 6 | grlimprclnbgredg | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) ) |
| 8 | sseq1 | |- ( x = { ( f ` A ) , ( f ` B ) } -> ( x C_ M <-> { ( f ` A ) , ( f ` B ) } C_ M ) ) |
|
| 9 | 8 6 | elrab2 | |- ( { ( f ` A ) , ( f ` B ) } e. L <-> ( { ( f ` A ) , ( f ` B ) } e. J /\ { ( f ` A ) , ( f ` B ) } C_ M ) ) |
| 10 | simpl | |- ( ( { ( f ` A ) , ( f ` B ) } e. J /\ { ( f ` A ) , ( f ` B ) } C_ M ) -> { ( f ` A ) , ( f ` B ) } e. J ) |
|
| 11 | 10 | a1i | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> ( ( { ( f ` A ) , ( f ` B ) } e. J /\ { ( f ` A ) , ( f ` B ) } C_ M ) -> { ( f ` A ) , ( f ` B ) } e. J ) ) |
| 12 | 9 11 | biimtrid | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) /\ f : N -1-1-onto-> M ) -> ( { ( f ` A ) , ( f ` B ) } e. L -> { ( f ` A ) , ( f ` B ) } e. J ) ) |
| 13 | 12 | imdistanda | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) -> ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. J ) ) ) |
| 14 | 13 | eximdv | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> ( E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. L ) -> E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. J ) ) ) |
| 15 | 7 14 | mpd | |- ( ( ( G e. USPGraph /\ H e. USPGraph ) /\ F e. ( G GraphLocIso H ) /\ ( A e. V /\ B e. W /\ { A , B } e. I ) ) -> E. f ( f : N -1-1-onto-> M /\ { ( f ` A ) , ( f ` B ) } e. J ) ) |