This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025) (Proof shortened by AV, 11-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gricgrlic | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( G ~=gr H -> G ~=lgr H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric | |- ( G ~=gr H <-> ( G GraphIso H ) =/= (/) ) |
|
| 2 | n0 | |- ( ( G GraphIso H ) =/= (/) <-> E. i i e. ( G GraphIso H ) ) |
|
| 3 | uhgrimgrlim | |- ( ( G e. UHGraph /\ H e. UHGraph /\ i e. ( G GraphIso H ) ) -> i e. ( G GraphLocIso H ) ) |
|
| 4 | brgrilci | |- ( i e. ( G GraphLocIso H ) -> G ~=lgr H ) |
|
| 5 | 3 4 | syl | |- ( ( G e. UHGraph /\ H e. UHGraph /\ i e. ( G GraphIso H ) ) -> G ~=lgr H ) |
| 6 | 5 | 3expa | |- ( ( ( G e. UHGraph /\ H e. UHGraph ) /\ i e. ( G GraphIso H ) ) -> G ~=lgr H ) |
| 7 | 6 | expcom | |- ( i e. ( G GraphIso H ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> G ~=lgr H ) ) |
| 8 | 7 | exlimiv | |- ( E. i i e. ( G GraphIso H ) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> G ~=lgr H ) ) |
| 9 | 2 8 | sylbi | |- ( ( G GraphIso H ) =/= (/) -> ( ( G e. UHGraph /\ H e. UHGraph ) -> G ~=lgr H ) ) |
| 10 | 1 9 | sylbi | |- ( G ~=gr H -> ( ( G e. UHGraph /\ H e. UHGraph ) -> G ~=lgr H ) ) |
| 11 | 10 | com12 | |- ( ( G e. UHGraph /\ H e. UHGraph ) -> ( G ~=gr H -> G ~=lgr H ) ) |