This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025) (Proof shortened by AV, 11-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gricgrlic | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric | ⊢ ( 𝐺 ≃𝑔𝑟 𝐻 ↔ ( 𝐺 GraphIso 𝐻 ) ≠ ∅ ) | |
| 2 | n0 | ⊢ ( ( 𝐺 GraphIso 𝐻 ) ≠ ∅ ↔ ∃ 𝑖 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 3 | uhgrimgrlim | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝑖 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) | |
| 4 | brgrilci | ⊢ ( 𝑖 ∈ ( 𝐺 GraphLocIso 𝐻 ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) ∧ 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) |
| 7 | 6 | expcom | ⊢ ( 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
| 8 | 7 | exlimiv | ⊢ ( ∃ 𝑖 𝑖 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
| 9 | 2 8 | sylbi | ⊢ ( ( 𝐺 GraphIso 𝐻 ) ≠ ∅ → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
| 10 | 1 9 | sylbi | ⊢ ( 𝐺 ≃𝑔𝑟 𝐻 → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |
| 11 | 10 | com12 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ) → ( 𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻 ) ) |