This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a finite set of sequential integers. E.g., 2 ... 5 means the set { 2 , 3 , 4 , 5 } . A special case of this definition (starting at 1) appears as Definition 11-2.1 of Gleason p. 141, where NN_k means our 1 ... k ; he calls these setssegments of the integers. (Contributed by NM, 6-Sep-2005) (Revised by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzval | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = { k e. ZZ | ( M <_ k /\ k <_ N ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( m = M -> ( m <_ k <-> M <_ k ) ) |
|
| 2 | 1 | anbi1d | |- ( m = M -> ( ( m <_ k /\ k <_ n ) <-> ( M <_ k /\ k <_ n ) ) ) |
| 3 | 2 | rabbidv | |- ( m = M -> { k e. ZZ | ( m <_ k /\ k <_ n ) } = { k e. ZZ | ( M <_ k /\ k <_ n ) } ) |
| 4 | breq2 | |- ( n = N -> ( k <_ n <-> k <_ N ) ) |
|
| 5 | 4 | anbi2d | |- ( n = N -> ( ( M <_ k /\ k <_ n ) <-> ( M <_ k /\ k <_ N ) ) ) |
| 6 | 5 | rabbidv | |- ( n = N -> { k e. ZZ | ( M <_ k /\ k <_ n ) } = { k e. ZZ | ( M <_ k /\ k <_ N ) } ) |
| 7 | df-fz | |- ... = ( m e. ZZ , n e. ZZ |-> { k e. ZZ | ( m <_ k /\ k <_ n ) } ) |
|
| 8 | zex | |- ZZ e. _V |
|
| 9 | 8 | rabex | |- { k e. ZZ | ( M <_ k /\ k <_ N ) } e. _V |
| 10 | 3 6 7 9 | ovmpo | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = { k e. ZZ | ( M <_ k /\ k <_ N ) } ) |