This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluzgtdifelfzo | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( N e. ( ZZ>= ` A ) /\ B < A ) -> ( N - A ) e. ( 0 ..^ ( N - B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( N e. ( ZZ>= ` A ) /\ B < A ) -> N e. ( ZZ>= ` A ) ) |
|
| 2 | 1 | adantl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> N e. ( ZZ>= ` A ) ) |
| 3 | simpl | |- ( ( A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
|
| 4 | 3 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> A e. ZZ ) |
| 5 | eluzelz | |- ( N e. ( ZZ>= ` A ) -> N e. ZZ ) |
|
| 6 | 5 | ad2antrr | |- ( ( ( N e. ( ZZ>= ` A ) /\ B < A ) /\ ( A e. ZZ /\ B e. ZZ ) ) -> N e. ZZ ) |
| 7 | simprr | |- ( ( ( N e. ( ZZ>= ` A ) /\ B < A ) /\ ( A e. ZZ /\ B e. ZZ ) ) -> B e. ZZ ) |
|
| 8 | 6 7 | zsubcld | |- ( ( ( N e. ( ZZ>= ` A ) /\ B < A ) /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( N - B ) e. ZZ ) |
| 9 | 8 | ancoms | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> ( N - B ) e. ZZ ) |
| 10 | 4 9 | zaddcld | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> ( A + ( N - B ) ) e. ZZ ) |
| 11 | zre | |- ( B e. ZZ -> B e. RR ) |
|
| 12 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 13 | posdif | |- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> 0 < ( A - B ) ) ) |
|
| 14 | 13 | biimpd | |- ( ( B e. RR /\ A e. RR ) -> ( B < A -> 0 < ( A - B ) ) ) |
| 15 | 11 12 14 | syl2anr | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( B < A -> 0 < ( A - B ) ) ) |
| 16 | 15 | adantld | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( N e. ( ZZ>= ` A ) /\ B < A ) -> 0 < ( A - B ) ) ) |
| 17 | 16 | imp | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> 0 < ( A - B ) ) |
| 18 | resubcl | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |
|
| 19 | 12 11 18 | syl2an | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. RR ) |
| 20 | 19 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> ( A - B ) e. RR ) |
| 21 | eluzelre | |- ( N e. ( ZZ>= ` A ) -> N e. RR ) |
|
| 22 | 21 | ad2antrl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> N e. RR ) |
| 23 | 20 22 | ltaddposd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> ( 0 < ( A - B ) <-> N < ( N + ( A - B ) ) ) ) |
| 24 | 17 23 | mpbid | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> N < ( N + ( A - B ) ) ) |
| 25 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 26 | 25 | ad2antrr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> A e. CC ) |
| 27 | eluzelcn | |- ( N e. ( ZZ>= ` A ) -> N e. CC ) |
|
| 28 | 27 | ad2antrl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> N e. CC ) |
| 29 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 30 | 29 | adantl | |- ( ( A e. ZZ /\ B e. ZZ ) -> B e. CC ) |
| 31 | 30 | adantr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> B e. CC ) |
| 32 | addsub12 | |- ( ( A e. CC /\ N e. CC /\ B e. CC ) -> ( A + ( N - B ) ) = ( N + ( A - B ) ) ) |
|
| 33 | 32 | breq2d | |- ( ( A e. CC /\ N e. CC /\ B e. CC ) -> ( N < ( A + ( N - B ) ) <-> N < ( N + ( A - B ) ) ) ) |
| 34 | 26 28 31 33 | syl3anc | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> ( N < ( A + ( N - B ) ) <-> N < ( N + ( A - B ) ) ) ) |
| 35 | 24 34 | mpbird | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> N < ( A + ( N - B ) ) ) |
| 36 | elfzo2 | |- ( N e. ( A ..^ ( A + ( N - B ) ) ) <-> ( N e. ( ZZ>= ` A ) /\ ( A + ( N - B ) ) e. ZZ /\ N < ( A + ( N - B ) ) ) ) |
|
| 37 | 2 10 35 36 | syl3anbrc | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> N e. ( A ..^ ( A + ( N - B ) ) ) ) |
| 38 | fzosubel3 | |- ( ( N e. ( A ..^ ( A + ( N - B ) ) ) /\ ( N - B ) e. ZZ ) -> ( N - A ) e. ( 0 ..^ ( N - B ) ) ) |
|
| 39 | 37 9 38 | syl2anc | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( N e. ( ZZ>= ` A ) /\ B < A ) ) -> ( N - A ) e. ( 0 ..^ ( N - B ) ) ) |
| 40 | 39 | ex | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( N e. ( ZZ>= ` A ) /\ B < A ) -> ( N - A ) e. ( 0 ..^ ( N - B ) ) ) ) |