This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvtp2g | |- ( ( ( B e. V /\ E e. W ) /\ ( A =/= B /\ B =/= C ) ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` B ) = E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tprot | |- { <. A , D >. , <. B , E >. , <. C , F >. } = { <. B , E >. , <. C , F >. , <. A , D >. } |
|
| 2 | 1 | fveq1i | |- ( { <. A , D >. , <. B , E >. , <. C , F >. } ` B ) = ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) |
| 3 | necom | |- ( A =/= B <-> B =/= A ) |
|
| 4 | fvtp1g | |- ( ( ( B e. V /\ E e. W ) /\ ( B =/= C /\ B =/= A ) ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) |
|
| 5 | 4 | expcom | |- ( ( B =/= C /\ B =/= A ) -> ( ( B e. V /\ E e. W ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) ) |
| 6 | 5 | ancoms | |- ( ( B =/= A /\ B =/= C ) -> ( ( B e. V /\ E e. W ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) ) |
| 7 | 3 6 | sylanb | |- ( ( A =/= B /\ B =/= C ) -> ( ( B e. V /\ E e. W ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) ) |
| 8 | 7 | impcom | |- ( ( ( B e. V /\ E e. W ) /\ ( A =/= B /\ B =/= C ) ) -> ( { <. B , E >. , <. C , F >. , <. A , D >. } ` B ) = E ) |
| 9 | 2 8 | eqtrid | |- ( ( ( B e. V /\ E e. W ) /\ ( A =/= B /\ B =/= C ) ) -> ( { <. A , D >. , <. B , E >. , <. C , F >. } ` B ) = E ) |