This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The values of two function compositions are equal if the values of the composed functions are pairwise equal. (Contributed by AV, 26-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvcofneq | |- ( ( G Fn A /\ K Fn B ) -> ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( G Fn A /\ K Fn B ) -> G Fn A ) |
|
| 2 | elinel1 | |- ( X e. ( A i^i B ) -> X e. A ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> X e. A ) |
| 4 | fvco2 | |- ( ( G Fn A /\ X e. A ) -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
|
| 5 | 1 3 4 | syl2an | |- ( ( ( G Fn A /\ K Fn B ) /\ ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) ) -> ( ( F o. G ) ` X ) = ( F ` ( G ` X ) ) ) |
| 6 | simpr | |- ( ( G Fn A /\ K Fn B ) -> K Fn B ) |
|
| 7 | elinel2 | |- ( X e. ( A i^i B ) -> X e. B ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> X e. B ) |
| 9 | fvco2 | |- ( ( K Fn B /\ X e. B ) -> ( ( H o. K ) ` X ) = ( H ` ( K ` X ) ) ) |
|
| 10 | 6 8 9 | syl2an | |- ( ( ( G Fn A /\ K Fn B ) /\ ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) ) -> ( ( H o. K ) ` X ) = ( H ` ( K ` X ) ) ) |
| 11 | fveq2 | |- ( ( K ` X ) = ( G ` X ) -> ( H ` ( K ` X ) ) = ( H ` ( G ` X ) ) ) |
|
| 12 | 11 | eqcoms | |- ( ( G ` X ) = ( K ` X ) -> ( H ` ( K ` X ) ) = ( H ` ( G ` X ) ) ) |
| 13 | 12 | 3ad2ant2 | |- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> ( H ` ( K ` X ) ) = ( H ` ( G ` X ) ) ) |
| 14 | 13 | adantl | |- ( ( ( G Fn A /\ K Fn B ) /\ ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) ) -> ( H ` ( K ` X ) ) = ( H ` ( G ` X ) ) ) |
| 15 | id | |- ( G Fn A -> G Fn A ) |
|
| 16 | fnfvelrn | |- ( ( G Fn A /\ X e. A ) -> ( G ` X ) e. ran G ) |
|
| 17 | 15 2 16 | syl2anr | |- ( ( X e. ( A i^i B ) /\ G Fn A ) -> ( G ` X ) e. ran G ) |
| 18 | 17 | ex | |- ( X e. ( A i^i B ) -> ( G Fn A -> ( G ` X ) e. ran G ) ) |
| 19 | id | |- ( K Fn B -> K Fn B ) |
|
| 20 | fnfvelrn | |- ( ( K Fn B /\ X e. B ) -> ( K ` X ) e. ran K ) |
|
| 21 | 19 7 20 | syl2anr | |- ( ( X e. ( A i^i B ) /\ K Fn B ) -> ( K ` X ) e. ran K ) |
| 22 | 21 | ex | |- ( X e. ( A i^i B ) -> ( K Fn B -> ( K ` X ) e. ran K ) ) |
| 23 | 18 22 | anim12d | |- ( X e. ( A i^i B ) -> ( ( G Fn A /\ K Fn B ) -> ( ( G ` X ) e. ran G /\ ( K ` X ) e. ran K ) ) ) |
| 24 | eleq1 | |- ( ( K ` X ) = ( G ` X ) -> ( ( K ` X ) e. ran K <-> ( G ` X ) e. ran K ) ) |
|
| 25 | 24 | eqcoms | |- ( ( G ` X ) = ( K ` X ) -> ( ( K ` X ) e. ran K <-> ( G ` X ) e. ran K ) ) |
| 26 | 25 | anbi2d | |- ( ( G ` X ) = ( K ` X ) -> ( ( ( G ` X ) e. ran G /\ ( K ` X ) e. ran K ) <-> ( ( G ` X ) e. ran G /\ ( G ` X ) e. ran K ) ) ) |
| 27 | elin | |- ( ( G ` X ) e. ( ran G i^i ran K ) <-> ( ( G ` X ) e. ran G /\ ( G ` X ) e. ran K ) ) |
|
| 28 | 27 | biimpri | |- ( ( ( G ` X ) e. ran G /\ ( G ` X ) e. ran K ) -> ( G ` X ) e. ( ran G i^i ran K ) ) |
| 29 | 26 28 | biimtrdi | |- ( ( G ` X ) = ( K ` X ) -> ( ( ( G ` X ) e. ran G /\ ( K ` X ) e. ran K ) -> ( G ` X ) e. ( ran G i^i ran K ) ) ) |
| 30 | 23 29 | sylan9 | |- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) ) -> ( ( G Fn A /\ K Fn B ) -> ( G ` X ) e. ( ran G i^i ran K ) ) ) |
| 31 | fveq2 | |- ( x = ( G ` X ) -> ( F ` x ) = ( F ` ( G ` X ) ) ) |
|
| 32 | fveq2 | |- ( x = ( G ` X ) -> ( H ` x ) = ( H ` ( G ` X ) ) ) |
|
| 33 | 31 32 | eqeq12d | |- ( x = ( G ` X ) -> ( ( F ` x ) = ( H ` x ) <-> ( F ` ( G ` X ) ) = ( H ` ( G ` X ) ) ) ) |
| 34 | 33 | rspcva | |- ( ( ( G ` X ) e. ( ran G i^i ran K ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> ( F ` ( G ` X ) ) = ( H ` ( G ` X ) ) ) |
| 35 | 34 | eqcomd | |- ( ( ( G ` X ) e. ( ran G i^i ran K ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> ( H ` ( G ` X ) ) = ( F ` ( G ` X ) ) ) |
| 36 | 35 | ex | |- ( ( G ` X ) e. ( ran G i^i ran K ) -> ( A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) -> ( H ` ( G ` X ) ) = ( F ` ( G ` X ) ) ) ) |
| 37 | 30 36 | syl6 | |- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) ) -> ( ( G Fn A /\ K Fn B ) -> ( A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) -> ( H ` ( G ` X ) ) = ( F ` ( G ` X ) ) ) ) ) |
| 38 | 37 | com23 | |- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) ) -> ( A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) -> ( ( G Fn A /\ K Fn B ) -> ( H ` ( G ` X ) ) = ( F ` ( G ` X ) ) ) ) ) |
| 39 | 38 | 3impia | |- ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> ( ( G Fn A /\ K Fn B ) -> ( H ` ( G ` X ) ) = ( F ` ( G ` X ) ) ) ) |
| 40 | 39 | impcom | |- ( ( ( G Fn A /\ K Fn B ) /\ ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) ) -> ( H ` ( G ` X ) ) = ( F ` ( G ` X ) ) ) |
| 41 | 10 14 40 | 3eqtrrd | |- ( ( ( G Fn A /\ K Fn B ) /\ ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) ) -> ( F ` ( G ` X ) ) = ( ( H o. K ) ` X ) ) |
| 42 | 5 41 | eqtrd | |- ( ( ( G Fn A /\ K Fn B ) /\ ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) |
| 43 | 42 | ex | |- ( ( G Fn A /\ K Fn B ) -> ( ( X e. ( A i^i B ) /\ ( G ` X ) = ( K ` X ) /\ A. x e. ( ran G i^i ran K ) ( F ` x ) = ( H ` x ) ) -> ( ( F o. G ) ` X ) = ( ( H o. K ) ` X ) ) ) |