This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a multivariate coefficient in terms of the coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | coe1fval.a | |- A = ( coe1 ` F ) |
|
| Assertion | fvcoe1 | |- ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> ( F ` X ) = ( A ` ( X ` (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | |- A = ( coe1 ` F ) |
|
| 2 | df1o2 | |- 1o = { (/) } |
|
| 3 | nn0ex | |- NN0 e. _V |
|
| 4 | 0ex | |- (/) e. _V |
|
| 5 | 2 3 4 | mapsnconst | |- ( X e. ( NN0 ^m 1o ) -> X = ( 1o X. { ( X ` (/) ) } ) ) |
| 6 | 5 | adantl | |- ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> X = ( 1o X. { ( X ` (/) ) } ) ) |
| 7 | 6 | fveq2d | |- ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> ( F ` X ) = ( F ` ( 1o X. { ( X ` (/) ) } ) ) ) |
| 8 | elmapi | |- ( X e. ( NN0 ^m 1o ) -> X : 1o --> NN0 ) |
|
| 9 | 0lt1o | |- (/) e. 1o |
|
| 10 | ffvelcdm | |- ( ( X : 1o --> NN0 /\ (/) e. 1o ) -> ( X ` (/) ) e. NN0 ) |
|
| 11 | 8 9 10 | sylancl | |- ( X e. ( NN0 ^m 1o ) -> ( X ` (/) ) e. NN0 ) |
| 12 | 1 | coe1fv | |- ( ( F e. V /\ ( X ` (/) ) e. NN0 ) -> ( A ` ( X ` (/) ) ) = ( F ` ( 1o X. { ( X ` (/) ) } ) ) ) |
| 13 | 11 12 | sylan2 | |- ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> ( A ` ( X ` (/) ) ) = ( F ` ( 1o X. { ( X ` (/) ) } ) ) ) |
| 14 | 7 13 | eqtr4d | |- ( ( F e. V /\ X e. ( NN0 ^m 1o ) ) -> ( F ` X ) = ( A ` ( X ` (/) ) ) ) |