This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an evaluated coefficient in a polynomial coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | coe1fval.a | |- A = ( coe1 ` F ) |
|
| Assertion | coe1fv | |- ( ( F e. V /\ N e. NN0 ) -> ( A ` N ) = ( F ` ( 1o X. { N } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | |- A = ( coe1 ` F ) |
|
| 2 | 1 | coe1fval | |- ( F e. V -> A = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ) |
| 3 | 2 | fveq1d | |- ( F e. V -> ( A ` N ) = ( ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ` N ) ) |
| 4 | sneq | |- ( n = N -> { n } = { N } ) |
|
| 5 | 4 | xpeq2d | |- ( n = N -> ( 1o X. { n } ) = ( 1o X. { N } ) ) |
| 6 | 5 | fveq2d | |- ( n = N -> ( F ` ( 1o X. { n } ) ) = ( F ` ( 1o X. { N } ) ) ) |
| 7 | eqid | |- ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) = ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) |
|
| 8 | fvex | |- ( F ` ( 1o X. { N } ) ) e. _V |
|
| 9 | 6 7 8 | fvmpt | |- ( N e. NN0 -> ( ( n e. NN0 |-> ( F ` ( 1o X. { n } ) ) ) ` N ) = ( F ` ( 1o X. { N } ) ) ) |
| 10 | 3 9 | sylan9eq | |- ( ( F e. V /\ N e. NN0 ) -> ( A ` N ) = ( F ` ( 1o X. { N } ) ) ) |