This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite simple graph is a finite pseudograph of finite size. (Contributed by AV, 27-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fusgrfupgrfs.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| fusgrfupgrfs.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | fusgrfupgrfs | ⊢ ( 𝐺 ∈ FinUSGraph → ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgrfupgrfs.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | fusgrfupgrfs.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | fusgrusgr | ⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph ) | |
| 4 | usgrupgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ UPGraph ) |
| 6 | 1 | fusgrvtxfi | ⊢ ( 𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin ) |
| 7 | fusgrfis | ⊢ ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin ) | |
| 8 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 9 | 2 8 | usgredgffibi | ⊢ ( 𝐺 ∈ USGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ 𝐼 ∈ Fin ) ) |
| 10 | 3 9 | syl | ⊢ ( 𝐺 ∈ FinUSGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ 𝐼 ∈ Fin ) ) |
| 11 | 7 10 | mpbid | ⊢ ( 𝐺 ∈ FinUSGraph → 𝐼 ∈ Fin ) |
| 12 | 5 6 11 | 3jca | ⊢ ( 𝐺 ∈ FinUSGraph → ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ) |