This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011) (Proof shortened by JJ, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funprg | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> Fun { <. A , C >. , <. B , D >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsng | |- ( ( A e. V /\ C e. X ) -> Fun { <. A , C >. } ) |
|
| 2 | funsng | |- ( ( B e. W /\ D e. Y ) -> Fun { <. B , D >. } ) |
|
| 3 | 1 2 | anim12i | |- ( ( ( A e. V /\ C e. X ) /\ ( B e. W /\ D e. Y ) ) -> ( Fun { <. A , C >. } /\ Fun { <. B , D >. } ) ) |
| 4 | 3 | an4s | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) ) -> ( Fun { <. A , C >. } /\ Fun { <. B , D >. } ) ) |
| 5 | 4 | 3adant3 | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( Fun { <. A , C >. } /\ Fun { <. B , D >. } ) ) |
| 6 | dmsnopg | |- ( C e. X -> dom { <. A , C >. } = { A } ) |
|
| 7 | dmsnopg | |- ( D e. Y -> dom { <. B , D >. } = { B } ) |
|
| 8 | 6 7 | ineqan12d | |- ( ( C e. X /\ D e. Y ) -> ( dom { <. A , C >. } i^i dom { <. B , D >. } ) = ( { A } i^i { B } ) ) |
| 9 | disjsn2 | |- ( A =/= B -> ( { A } i^i { B } ) = (/) ) |
|
| 10 | 8 9 | sylan9eq | |- ( ( ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( dom { <. A , C >. } i^i dom { <. B , D >. } ) = (/) ) |
| 11 | 10 | 3adant1 | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> ( dom { <. A , C >. } i^i dom { <. B , D >. } ) = (/) ) |
| 12 | funun | |- ( ( ( Fun { <. A , C >. } /\ Fun { <. B , D >. } ) /\ ( dom { <. A , C >. } i^i dom { <. B , D >. } ) = (/) ) -> Fun ( { <. A , C >. } u. { <. B , D >. } ) ) |
|
| 13 | 5 11 12 | syl2anc | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> Fun ( { <. A , C >. } u. { <. B , D >. } ) ) |
| 14 | df-pr | |- { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) |
|
| 15 | 14 | funeqi | |- ( Fun { <. A , C >. , <. B , D >. } <-> Fun ( { <. A , C >. } u. { <. B , D >. } ) ) |
| 16 | 13 15 | sylibr | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> Fun { <. A , C >. , <. B , D >. } ) |