This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mosubopt | |- ( A. y A. z E* x ph -> E* x E. y E. z ( A = <. y , z >. /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 | |- F/ y A. y A. z E* x ph |
|
| 2 | nfe1 | |- F/ y E. y E. z ( A = <. y , z >. /\ ph ) |
|
| 3 | 2 | nfmov | |- F/ y E* x E. y E. z ( A = <. y , z >. /\ ph ) |
| 4 | nfa1 | |- F/ z A. z E* x ph |
|
| 5 | nfe1 | |- F/ z E. z ( A = <. y , z >. /\ ph ) |
|
| 6 | 5 | nfex | |- F/ z E. y E. z ( A = <. y , z >. /\ ph ) |
| 7 | 6 | nfmov | |- F/ z E* x E. y E. z ( A = <. y , z >. /\ ph ) |
| 8 | copsexgw | |- ( A = <. y , z >. -> ( ph <-> E. y E. z ( A = <. y , z >. /\ ph ) ) ) |
|
| 9 | 8 | mobidv | |- ( A = <. y , z >. -> ( E* x ph <-> E* x E. y E. z ( A = <. y , z >. /\ ph ) ) ) |
| 10 | 9 | biimpcd | |- ( E* x ph -> ( A = <. y , z >. -> E* x E. y E. z ( A = <. y , z >. /\ ph ) ) ) |
| 11 | 10 | sps | |- ( A. z E* x ph -> ( A = <. y , z >. -> E* x E. y E. z ( A = <. y , z >. /\ ph ) ) ) |
| 12 | 4 7 11 | exlimd | |- ( A. z E* x ph -> ( E. z A = <. y , z >. -> E* x E. y E. z ( A = <. y , z >. /\ ph ) ) ) |
| 13 | 12 | sps | |- ( A. y A. z E* x ph -> ( E. z A = <. y , z >. -> E* x E. y E. z ( A = <. y , z >. /\ ph ) ) ) |
| 14 | 1 3 13 | exlimd | |- ( A. y A. z E* x ph -> ( E. y E. z A = <. y , z >. -> E* x E. y E. z ( A = <. y , z >. /\ ph ) ) ) |
| 15 | simpl | |- ( ( A = <. y , z >. /\ ph ) -> A = <. y , z >. ) |
|
| 16 | 15 | 2eximi | |- ( E. y E. z ( A = <. y , z >. /\ ph ) -> E. y E. z A = <. y , z >. ) |
| 17 | 16 | exlimiv | |- ( E. x E. y E. z ( A = <. y , z >. /\ ph ) -> E. y E. z A = <. y , z >. ) |
| 18 | nexmo | |- ( -. E. x E. y E. z ( A = <. y , z >. /\ ph ) -> E* x E. y E. z ( A = <. y , z >. /\ ph ) ) |
|
| 19 | 17 18 | nsyl5 | |- ( -. E. y E. z A = <. y , z >. -> E* x E. y E. z ( A = <. y , z >. /\ ph ) ) |
| 20 | 14 19 | pm2.61d1 | |- ( A. y A. z E* x ph -> E* x E. y E. z ( A = <. y , z >. /\ ph ) ) |