This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a function which is an ordered pair is a singleton. (Contributed by AV, 15-Nov-2021) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funopdmsn.g | |- G = <. X , Y >. |
|
| funopdmsn.x | |- X e. V |
||
| funopdmsn.y | |- Y e. W |
||
| Assertion | funopdmsn | |- ( ( Fun G /\ A e. dom G /\ B e. dom G ) -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopdmsn.g | |- G = <. X , Y >. |
|
| 2 | funopdmsn.x | |- X e. V |
|
| 3 | funopdmsn.y | |- Y e. W |
|
| 4 | 1 | funeqi | |- ( Fun G <-> Fun <. X , Y >. ) |
| 5 | 2 | elexi | |- X e. _V |
| 6 | 3 | elexi | |- Y e. _V |
| 7 | 5 6 | funop | |- ( Fun <. X , Y >. <-> E. x ( X = { x } /\ <. X , Y >. = { <. x , x >. } ) ) |
| 8 | 4 7 | bitri | |- ( Fun G <-> E. x ( X = { x } /\ <. X , Y >. = { <. x , x >. } ) ) |
| 9 | 1 | eqcomi | |- <. X , Y >. = G |
| 10 | 9 | eqeq1i | |- ( <. X , Y >. = { <. x , x >. } <-> G = { <. x , x >. } ) |
| 11 | dmeq | |- ( G = { <. x , x >. } -> dom G = dom { <. x , x >. } ) |
|
| 12 | vex | |- x e. _V |
|
| 13 | 12 | dmsnop | |- dom { <. x , x >. } = { x } |
| 14 | 11 13 | eqtrdi | |- ( G = { <. x , x >. } -> dom G = { x } ) |
| 15 | eleq2 | |- ( dom G = { x } -> ( A e. dom G <-> A e. { x } ) ) |
|
| 16 | eleq2 | |- ( dom G = { x } -> ( B e. dom G <-> B e. { x } ) ) |
|
| 17 | 15 16 | anbi12d | |- ( dom G = { x } -> ( ( A e. dom G /\ B e. dom G ) <-> ( A e. { x } /\ B e. { x } ) ) ) |
| 18 | elsni | |- ( A e. { x } -> A = x ) |
|
| 19 | elsni | |- ( B e. { x } -> B = x ) |
|
| 20 | eqtr3 | |- ( ( A = x /\ B = x ) -> A = B ) |
|
| 21 | 18 19 20 | syl2an | |- ( ( A e. { x } /\ B e. { x } ) -> A = B ) |
| 22 | 17 21 | biimtrdi | |- ( dom G = { x } -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) |
| 23 | 14 22 | syl | |- ( G = { <. x , x >. } -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) |
| 24 | 10 23 | sylbi | |- ( <. X , Y >. = { <. x , x >. } -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) |
| 25 | 24 | adantl | |- ( ( X = { x } /\ <. X , Y >. = { <. x , x >. } ) -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) |
| 26 | 25 | exlimiv | |- ( E. x ( X = { x } /\ <. X , Y >. = { <. x , x >. } ) -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) |
| 27 | 8 26 | sylbi | |- ( Fun G -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) |
| 28 | 27 | 3impib | |- ( ( Fun G /\ A e. dom G /\ B e. dom G ) -> A = B ) |