This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two completely distinct unordered pairs are disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017) (Proof shortened by JJ, 23-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjpr2 | |- ( ( ( A =/= C /\ B =/= C ) /\ ( A =/= D /\ B =/= D ) ) -> ( { A , B } i^i { C , D } ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr | |- { C , D } = ( { C } u. { D } ) |
|
| 2 | 1 | ineq2i | |- ( { A , B } i^i { C , D } ) = ( { A , B } i^i ( { C } u. { D } ) ) |
| 3 | indi | |- ( { A , B } i^i ( { C } u. { D } ) ) = ( ( { A , B } i^i { C } ) u. ( { A , B } i^i { D } ) ) |
|
| 4 | 2 3 | eqtri | |- ( { A , B } i^i { C , D } ) = ( ( { A , B } i^i { C } ) u. ( { A , B } i^i { D } ) ) |
| 5 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 6 | 5 | ineq1i | |- ( { A , B } i^i { C } ) = ( ( { A } u. { B } ) i^i { C } ) |
| 7 | indir | |- ( ( { A } u. { B } ) i^i { C } ) = ( ( { A } i^i { C } ) u. ( { B } i^i { C } ) ) |
|
| 8 | 6 7 | eqtri | |- ( { A , B } i^i { C } ) = ( ( { A } i^i { C } ) u. ( { B } i^i { C } ) ) |
| 9 | disjsn2 | |- ( A =/= C -> ( { A } i^i { C } ) = (/) ) |
|
| 10 | disjsn2 | |- ( B =/= C -> ( { B } i^i { C } ) = (/) ) |
|
| 11 | 9 10 | anim12i | |- ( ( A =/= C /\ B =/= C ) -> ( ( { A } i^i { C } ) = (/) /\ ( { B } i^i { C } ) = (/) ) ) |
| 12 | un00 | |- ( ( ( { A } i^i { C } ) = (/) /\ ( { B } i^i { C } ) = (/) ) <-> ( ( { A } i^i { C } ) u. ( { B } i^i { C } ) ) = (/) ) |
|
| 13 | 11 12 | sylib | |- ( ( A =/= C /\ B =/= C ) -> ( ( { A } i^i { C } ) u. ( { B } i^i { C } ) ) = (/) ) |
| 14 | 8 13 | eqtrid | |- ( ( A =/= C /\ B =/= C ) -> ( { A , B } i^i { C } ) = (/) ) |
| 15 | 14 | adantr | |- ( ( ( A =/= C /\ B =/= C ) /\ ( A =/= D /\ B =/= D ) ) -> ( { A , B } i^i { C } ) = (/) ) |
| 16 | 5 | ineq1i | |- ( { A , B } i^i { D } ) = ( ( { A } u. { B } ) i^i { D } ) |
| 17 | indir | |- ( ( { A } u. { B } ) i^i { D } ) = ( ( { A } i^i { D } ) u. ( { B } i^i { D } ) ) |
|
| 18 | 16 17 | eqtri | |- ( { A , B } i^i { D } ) = ( ( { A } i^i { D } ) u. ( { B } i^i { D } ) ) |
| 19 | disjsn2 | |- ( A =/= D -> ( { A } i^i { D } ) = (/) ) |
|
| 20 | disjsn2 | |- ( B =/= D -> ( { B } i^i { D } ) = (/) ) |
|
| 21 | 19 20 | anim12i | |- ( ( A =/= D /\ B =/= D ) -> ( ( { A } i^i { D } ) = (/) /\ ( { B } i^i { D } ) = (/) ) ) |
| 22 | un00 | |- ( ( ( { A } i^i { D } ) = (/) /\ ( { B } i^i { D } ) = (/) ) <-> ( ( { A } i^i { D } ) u. ( { B } i^i { D } ) ) = (/) ) |
|
| 23 | 21 22 | sylib | |- ( ( A =/= D /\ B =/= D ) -> ( ( { A } i^i { D } ) u. ( { B } i^i { D } ) ) = (/) ) |
| 24 | 18 23 | eqtrid | |- ( ( A =/= D /\ B =/= D ) -> ( { A , B } i^i { D } ) = (/) ) |
| 25 | 24 | adantl | |- ( ( ( A =/= C /\ B =/= C ) /\ ( A =/= D /\ B =/= D ) ) -> ( { A , B } i^i { D } ) = (/) ) |
| 26 | 15 25 | uneq12d | |- ( ( ( A =/= C /\ B =/= C ) /\ ( A =/= D /\ B =/= D ) ) -> ( ( { A , B } i^i { C } ) u. ( { A , B } i^i { D } ) ) = ( (/) u. (/) ) ) |
| 27 | un0 | |- ( (/) u. (/) ) = (/) |
|
| 28 | 26 27 | eqtrdi | |- ( ( ( A =/= C /\ B =/= C ) /\ ( A =/= D /\ B =/= D ) ) -> ( ( { A , B } i^i { C } ) u. ( { A , B } i^i { D } ) ) = (/) ) |
| 29 | 4 28 | eqtrid | |- ( ( ( A =/= C /\ B =/= C ) /\ ( A =/= D /\ B =/= D ) ) -> ( { A , B } i^i { C , D } ) = (/) ) |