This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of fsuppeq avoiding ax-rep by assuming F is a set rather than its domain I . (Contributed by SN, 30-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsuppeqg | |- ( ( F e. V /\ Z e. W ) -> ( F : I --> S -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppimacnv | |- ( ( F e. V /\ Z e. W ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
|
| 2 | ffun | |- ( F : I --> S -> Fun F ) |
|
| 3 | inpreima | |- ( Fun F -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) ) |
|
| 4 | 2 3 | syl | |- ( F : I --> S -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) ) |
| 5 | cnvimass | |- ( `' F " ( _V \ { Z } ) ) C_ dom F |
|
| 6 | fdm | |- ( F : I --> S -> dom F = I ) |
|
| 7 | fimacnv | |- ( F : I --> S -> ( `' F " S ) = I ) |
|
| 8 | 6 7 | eqtr4d | |- ( F : I --> S -> dom F = ( `' F " S ) ) |
| 9 | 5 8 | sseqtrid | |- ( F : I --> S -> ( `' F " ( _V \ { Z } ) ) C_ ( `' F " S ) ) |
| 10 | sseqin2 | |- ( ( `' F " ( _V \ { Z } ) ) C_ ( `' F " S ) <-> ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) ) |
|
| 11 | 9 10 | sylib | |- ( F : I --> S -> ( ( `' F " S ) i^i ( `' F " ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) ) |
| 12 | 4 11 | eqtrd | |- ( F : I --> S -> ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( `' F " ( _V \ { Z } ) ) ) |
| 13 | invdif | |- ( S i^i ( _V \ { Z } ) ) = ( S \ { Z } ) |
|
| 14 | 13 | imaeq2i | |- ( `' F " ( S i^i ( _V \ { Z } ) ) ) = ( `' F " ( S \ { Z } ) ) |
| 15 | 12 14 | eqtr3di | |- ( F : I --> S -> ( `' F " ( _V \ { Z } ) ) = ( `' F " ( S \ { Z } ) ) ) |
| 16 | 1 15 | sylan9eq | |- ( ( ( F e. V /\ Z e. W ) /\ F : I --> S ) -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) |
| 17 | 16 | ex | |- ( ( F e. V /\ Z e. W ) -> ( F : I --> S -> ( F supp Z ) = ( `' F " ( S \ { Z } ) ) ) ) |