This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of fsuppeq avoiding ax-rep by assuming F is a set rather than its domain I . (Contributed by SN, 30-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsuppeqg | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 : 𝐼 ⟶ 𝑆 → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppimacnv | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) | |
| 2 | ffun | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → Fun 𝐹 ) | |
| 3 | inpreima | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) ) = ( ( ◡ 𝐹 “ 𝑆 ) ∩ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → ( ◡ 𝐹 “ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) ) = ( ( ◡ 𝐹 “ 𝑆 ) ∩ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) ) |
| 5 | cnvimass | ⊢ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ dom 𝐹 | |
| 6 | fdm | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → dom 𝐹 = 𝐼 ) | |
| 7 | fimacnv | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → ( ◡ 𝐹 “ 𝑆 ) = 𝐼 ) | |
| 8 | 6 7 | eqtr4d | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → dom 𝐹 = ( ◡ 𝐹 “ 𝑆 ) ) |
| 9 | 5 8 | sseqtrid | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ ( ◡ 𝐹 “ 𝑆 ) ) |
| 10 | sseqin2 | ⊢ ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ ( ◡ 𝐹 “ 𝑆 ) ↔ ( ( ◡ 𝐹 “ 𝑆 ) ∩ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) | |
| 11 | 9 10 | sylib | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → ( ( ◡ 𝐹 “ 𝑆 ) ∩ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 12 | 4 11 | eqtrd | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → ( ◡ 𝐹 “ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 13 | invdif | ⊢ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) = ( 𝑆 ∖ { 𝑍 } ) | |
| 14 | 13 | imaeq2i | ⊢ ( ◡ 𝐹 “ ( 𝑆 ∩ ( V ∖ { 𝑍 } ) ) ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) |
| 15 | 12 14 | eqtr3di | ⊢ ( 𝐹 : 𝐼 ⟶ 𝑆 → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) |
| 16 | 1 15 | sylan9eq | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝐹 : 𝐼 ⟶ 𝑆 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) |
| 17 | 16 | ex | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 : 𝐼 ⟶ 𝑆 → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( 𝑆 ∖ { 𝑍 } ) ) ) ) |