This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsnunres | |- ( ( F Fn S /\ -. X e. S ) -> ( ( F u. { <. X , Y >. } ) |` S ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm | |- ( F Fn S -> ( F |` S ) = F ) |
|
| 2 | 1 | adantr | |- ( ( F Fn S /\ -. X e. S ) -> ( F |` S ) = F ) |
| 3 | ressnop0 | |- ( -. X e. S -> ( { <. X , Y >. } |` S ) = (/) ) |
|
| 4 | 3 | adantl | |- ( ( F Fn S /\ -. X e. S ) -> ( { <. X , Y >. } |` S ) = (/) ) |
| 5 | 2 4 | uneq12d | |- ( ( F Fn S /\ -. X e. S ) -> ( ( F |` S ) u. ( { <. X , Y >. } |` S ) ) = ( F u. (/) ) ) |
| 6 | resundir | |- ( ( F u. { <. X , Y >. } ) |` S ) = ( ( F |` S ) u. ( { <. X , Y >. } |` S ) ) |
|
| 7 | un0 | |- ( F u. (/) ) = F |
|
| 8 | 7 | eqcomi | |- F = ( F u. (/) ) |
| 9 | 5 6 8 | 3eqtr4g | |- ( ( F Fn S /\ -. X e. S ) -> ( ( F u. { <. X , Y >. } ) |` S ) = F ) |