This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsnunres | ⊢ ( ( 𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆 ) → ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) ↾ 𝑆 ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm | ⊢ ( 𝐹 Fn 𝑆 → ( 𝐹 ↾ 𝑆 ) = 𝐹 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆 ) → ( 𝐹 ↾ 𝑆 ) = 𝐹 ) |
| 3 | ressnop0 | ⊢ ( ¬ 𝑋 ∈ 𝑆 → ( { 〈 𝑋 , 𝑌 〉 } ↾ 𝑆 ) = ∅ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆 ) → ( { 〈 𝑋 , 𝑌 〉 } ↾ 𝑆 ) = ∅ ) |
| 5 | 2 4 | uneq12d | ⊢ ( ( 𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆 ) → ( ( 𝐹 ↾ 𝑆 ) ∪ ( { 〈 𝑋 , 𝑌 〉 } ↾ 𝑆 ) ) = ( 𝐹 ∪ ∅ ) ) |
| 6 | resundir | ⊢ ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) ↾ 𝑆 ) = ( ( 𝐹 ↾ 𝑆 ) ∪ ( { 〈 𝑋 , 𝑌 〉 } ↾ 𝑆 ) ) | |
| 7 | un0 | ⊢ ( 𝐹 ∪ ∅ ) = 𝐹 | |
| 8 | 7 | eqcomi | ⊢ 𝐹 = ( 𝐹 ∪ ∅ ) |
| 9 | 5 6 8 | 3eqtr4g | ⊢ ( ( 𝐹 Fn 𝑆 ∧ ¬ 𝑋 ∈ 𝑆 ) → ( ( 𝐹 ∪ { 〈 𝑋 , 𝑌 〉 } ) ↾ 𝑆 ) = 𝐹 ) |