This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of functions with a given domain and a given codomain is mapped, through evaluation at a point of the domain, into the codomain. (Contributed by AV, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsetfocdm.f | |- F = { f | f : A --> B } |
|
| fsetfocdm.s | |- S = ( g e. F |-> ( g ` X ) ) |
||
| Assertion | fsetfcdm | |- ( X e. A -> S : F --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsetfocdm.f | |- F = { f | f : A --> B } |
|
| 2 | fsetfocdm.s | |- S = ( g e. F |-> ( g ` X ) ) |
|
| 3 | vex | |- g e. _V |
|
| 4 | feq1 | |- ( f = g -> ( f : A --> B <-> g : A --> B ) ) |
|
| 5 | 3 4 1 | elab2 | |- ( g e. F <-> g : A --> B ) |
| 6 | ffvelcdm | |- ( ( g : A --> B /\ X e. A ) -> ( g ` X ) e. B ) |
|
| 7 | 6 | expcom | |- ( X e. A -> ( g : A --> B -> ( g ` X ) e. B ) ) |
| 8 | 5 7 | biimtrid | |- ( X e. A -> ( g e. F -> ( g ` X ) e. B ) ) |
| 9 | 8 | imp | |- ( ( X e. A /\ g e. F ) -> ( g ` X ) e. B ) |
| 10 | 9 2 | fmptd | |- ( X e. A -> S : F --> B ) |