This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subclass of a well-founded class A with the property that whenever it contains all predecessors of an element of A it also contains that element, is equal to A . Compare wfi and tfi , which are special cases of this theorem that do not require the axiom of infinity. (Contributed by Scott Fenton, 6-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frind | |- ( ( ( R Fr A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 | |- ( A C_ B <-> ( A \ B ) = (/) ) |
|
| 2 | 1 | necon3bbii | |- ( -. A C_ B <-> ( A \ B ) =/= (/) ) |
| 3 | difss | |- ( A \ B ) C_ A |
|
| 4 | frmin | |- ( ( ( R Fr A /\ R Se A ) /\ ( ( A \ B ) C_ A /\ ( A \ B ) =/= (/) ) ) -> E. y e. ( A \ B ) Pred ( R , ( A \ B ) , y ) = (/) ) |
|
| 5 | eldif | |- ( y e. ( A \ B ) <-> ( y e. A /\ -. y e. B ) ) |
|
| 6 | 5 | anbi1i | |- ( ( y e. ( A \ B ) /\ Pred ( R , ( A \ B ) , y ) = (/) ) <-> ( ( y e. A /\ -. y e. B ) /\ Pred ( R , ( A \ B ) , y ) = (/) ) ) |
| 7 | anass | |- ( ( ( y e. A /\ -. y e. B ) /\ Pred ( R , ( A \ B ) , y ) = (/) ) <-> ( y e. A /\ ( -. y e. B /\ Pred ( R , ( A \ B ) , y ) = (/) ) ) ) |
|
| 8 | ancom | |- ( ( -. y e. B /\ Pred ( R , ( A \ B ) , y ) = (/) ) <-> ( Pred ( R , ( A \ B ) , y ) = (/) /\ -. y e. B ) ) |
|
| 9 | indif2 | |- ( ( `' R " { y } ) i^i ( A \ B ) ) = ( ( ( `' R " { y } ) i^i A ) \ B ) |
|
| 10 | df-pred | |- Pred ( R , ( A \ B ) , y ) = ( ( A \ B ) i^i ( `' R " { y } ) ) |
|
| 11 | incom | |- ( ( A \ B ) i^i ( `' R " { y } ) ) = ( ( `' R " { y } ) i^i ( A \ B ) ) |
|
| 12 | 10 11 | eqtri | |- Pred ( R , ( A \ B ) , y ) = ( ( `' R " { y } ) i^i ( A \ B ) ) |
| 13 | df-pred | |- Pred ( R , A , y ) = ( A i^i ( `' R " { y } ) ) |
|
| 14 | incom | |- ( A i^i ( `' R " { y } ) ) = ( ( `' R " { y } ) i^i A ) |
|
| 15 | 13 14 | eqtri | |- Pred ( R , A , y ) = ( ( `' R " { y } ) i^i A ) |
| 16 | 15 | difeq1i | |- ( Pred ( R , A , y ) \ B ) = ( ( ( `' R " { y } ) i^i A ) \ B ) |
| 17 | 9 12 16 | 3eqtr4i | |- Pred ( R , ( A \ B ) , y ) = ( Pred ( R , A , y ) \ B ) |
| 18 | 17 | eqeq1i | |- ( Pred ( R , ( A \ B ) , y ) = (/) <-> ( Pred ( R , A , y ) \ B ) = (/) ) |
| 19 | ssdif0 | |- ( Pred ( R , A , y ) C_ B <-> ( Pred ( R , A , y ) \ B ) = (/) ) |
|
| 20 | 18 19 | bitr4i | |- ( Pred ( R , ( A \ B ) , y ) = (/) <-> Pred ( R , A , y ) C_ B ) |
| 21 | 20 | anbi1i | |- ( ( Pred ( R , ( A \ B ) , y ) = (/) /\ -. y e. B ) <-> ( Pred ( R , A , y ) C_ B /\ -. y e. B ) ) |
| 22 | 8 21 | bitri | |- ( ( -. y e. B /\ Pred ( R , ( A \ B ) , y ) = (/) ) <-> ( Pred ( R , A , y ) C_ B /\ -. y e. B ) ) |
| 23 | 22 | anbi2i | |- ( ( y e. A /\ ( -. y e. B /\ Pred ( R , ( A \ B ) , y ) = (/) ) ) <-> ( y e. A /\ ( Pred ( R , A , y ) C_ B /\ -. y e. B ) ) ) |
| 24 | 6 7 23 | 3bitri | |- ( ( y e. ( A \ B ) /\ Pred ( R , ( A \ B ) , y ) = (/) ) <-> ( y e. A /\ ( Pred ( R , A , y ) C_ B /\ -. y e. B ) ) ) |
| 25 | 24 | rexbii2 | |- ( E. y e. ( A \ B ) Pred ( R , ( A \ B ) , y ) = (/) <-> E. y e. A ( Pred ( R , A , y ) C_ B /\ -. y e. B ) ) |
| 26 | rexanali | |- ( E. y e. A ( Pred ( R , A , y ) C_ B /\ -. y e. B ) <-> -. A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) |
|
| 27 | 25 26 | bitri | |- ( E. y e. ( A \ B ) Pred ( R , ( A \ B ) , y ) = (/) <-> -. A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) |
| 28 | 4 27 | sylib | |- ( ( ( R Fr A /\ R Se A ) /\ ( ( A \ B ) C_ A /\ ( A \ B ) =/= (/) ) ) -> -. A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) |
| 29 | 28 | ex | |- ( ( R Fr A /\ R Se A ) -> ( ( ( A \ B ) C_ A /\ ( A \ B ) =/= (/) ) -> -. A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) |
| 30 | 3 29 | mpani | |- ( ( R Fr A /\ R Se A ) -> ( ( A \ B ) =/= (/) -> -. A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) |
| 31 | 2 30 | biimtrid | |- ( ( R Fr A /\ R Se A ) -> ( -. A C_ B -> -. A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) |
| 32 | 31 | con4d | |- ( ( R Fr A /\ R Se A ) -> ( A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) -> A C_ B ) ) |
| 33 | 32 | imp | |- ( ( ( R Fr A /\ R Se A ) /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) -> A C_ B ) |
| 34 | 33 | adantrl | |- ( ( ( R Fr A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> A C_ B ) |
| 35 | simprl | |- ( ( ( R Fr A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> B C_ A ) |
|
| 36 | 34 35 | eqssd | |- ( ( ( R Fr A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> A = B ) |