This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2011) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frins2f.1 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
|
| frins2f.2 | |- F/ y ps |
||
| frins2f.3 | |- ( y = z -> ( ph <-> ps ) ) |
||
| Assertion | frins2f | |- ( ( R Fr A /\ R Se A ) -> A. y e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frins2f.1 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
|
| 2 | frins2f.2 | |- F/ y ps |
|
| 3 | frins2f.3 | |- ( y = z -> ( ph <-> ps ) ) |
|
| 4 | sbsbc | |- ( [ z / y ] ph <-> [. z / y ]. ph ) |
|
| 5 | 2 3 | sbiev | |- ( [ z / y ] ph <-> ps ) |
| 6 | 4 5 | bitr3i | |- ( [. z / y ]. ph <-> ps ) |
| 7 | 6 | ralbii | |- ( A. z e. Pred ( R , A , y ) [. z / y ]. ph <-> A. z e. Pred ( R , A , y ) ps ) |
| 8 | 7 1 | biimtrid | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) |
| 9 | 8 | frinsg | |- ( ( R Fr A /\ R Se A ) -> A. y e. A ph ) |