This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Well-Founded Induction
frins2f
Metamath Proof Explorer
Description: Well-Founded Induction schema, using implicit substitution.
(Contributed by Scott Fenton , 7-Feb-2011) (Revised by Mario Carneiro , 11-Dec-2016)
Ref
Expression
Hypotheses
frins2f.1
⊢ y ∈ A → ∀ z ∈ Pred R A y ψ → φ
frins2f.2
⊢ Ⅎ y ψ
frins2f.3
⊢ y = z → φ ↔ ψ
Assertion
frins2f
⊢ R Fr A ∧ R Se A → ∀ y ∈ A φ
Proof
Step
Hyp
Ref
Expression
1
frins2f.1
⊢ y ∈ A → ∀ z ∈ Pred R A y ψ → φ
2
frins2f.2
⊢ Ⅎ y ψ
3
frins2f.3
⊢ y = z → φ ↔ ψ
4
sbsbc
⊢ z y φ ↔ [ ˙ z / y ] ˙ φ
5
2 3
sbiev
⊢ z y φ ↔ ψ
6
4 5
bitr3i
⊢ [ ˙ z / y ] ˙ φ ↔ ψ
7
6
ralbii
⊢ ∀ z ∈ Pred R A y [ ˙ z / y ] ˙ φ ↔ ∀ z ∈ Pred R A y ψ
8
7 1
biimtrid
⊢ y ∈ A → ∀ z ∈ Pred R A y [ ˙ z / y ] ˙ φ → φ
9
8
frinsg
⊢ R Fr A ∧ R Se A → ∀ y ∈ A φ