This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a function defined by well-founded recursion to the predecessor of an element of its domain is a set. Avoids the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fprfung.1 | |- F = frecs ( R , A , G ) |
|
| Assertion | fprresex | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> ( F |` Pred ( R , A , X ) ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprfung.1 | |- F = frecs ( R , A , G ) |
|
| 2 | 1 | fprfung | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> Fun F ) |
| 3 | funfvop | |- ( ( Fun F /\ X e. dom F ) -> <. X , ( F ` X ) >. e. F ) |
|
| 4 | 2 3 | sylan | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> <. X , ( F ` X ) >. e. F ) |
| 5 | df-frecs | |- frecs ( R , A , G ) = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 6 | 1 5 | eqtri | |- F = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
| 7 | 6 | eleq2i | |- ( <. X , ( F ` X ) >. e. F <-> <. X , ( F ` X ) >. e. U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) |
| 8 | eluni | |- ( <. X , ( F ` X ) >. e. U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } <-> E. g ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
|
| 9 | 7 8 | bitri | |- ( <. X , ( F ` X ) >. e. F <-> E. g ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
| 10 | 4 9 | sylib | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> E. g ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
| 11 | eqid | |- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 12 | 11 | frrlem1 | |- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { g | E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( w G ( g |` Pred ( R , A , w ) ) ) ) } |
| 13 | 12 | eqabri | |- ( g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } <-> E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( w G ( g |` Pred ( R , A , w ) ) ) ) ) |
| 14 | 13 | biimpi | |- ( g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } -> E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( w G ( g |` Pred ( R , A , w ) ) ) ) ) |
| 15 | 14 | adantl | |- ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) -> E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( w G ( g |` Pred ( R , A , w ) ) ) ) ) |
| 16 | 15 | adantl | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( w G ( g |` Pred ( R , A , w ) ) ) ) ) |
| 17 | 3simpa | |- ( ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( w G ( g |` Pred ( R , A , w ) ) ) ) -> ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) |
|
| 18 | 2 | ad2antrr | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> Fun F ) |
| 19 | simprlr | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) |
|
| 20 | elssuni | |- ( g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } -> g C_ U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) |
|
| 21 | 19 20 | syl | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> g C_ U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) |
| 22 | 21 6 | sseqtrrdi | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> g C_ F ) |
| 23 | predeq3 | |- ( w = X -> Pred ( R , A , w ) = Pred ( R , A , X ) ) |
|
| 24 | 23 | sseq1d | |- ( w = X -> ( Pred ( R , A , w ) C_ z <-> Pred ( R , A , X ) C_ z ) ) |
| 25 | simprrr | |- ( ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) -> A. w e. z Pred ( R , A , w ) C_ z ) |
|
| 26 | 25 | adantl | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> A. w e. z Pred ( R , A , w ) C_ z ) |
| 27 | simplr | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> X e. dom F ) |
|
| 28 | simprll | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> <. X , ( F ` X ) >. e. g ) |
|
| 29 | df-br | |- ( X g ( F ` X ) <-> <. X , ( F ` X ) >. e. g ) |
|
| 30 | 28 29 | sylibr | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> X g ( F ` X ) ) |
| 31 | fvex | |- ( F ` X ) e. _V |
|
| 32 | breldmg | |- ( ( X e. dom F /\ ( F ` X ) e. _V /\ X g ( F ` X ) ) -> X e. dom g ) |
|
| 33 | 31 32 | mp3an2 | |- ( ( X e. dom F /\ X g ( F ` X ) ) -> X e. dom g ) |
| 34 | 27 30 33 | syl2anc | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> X e. dom g ) |
| 35 | simprrl | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> g Fn z ) |
|
| 36 | 35 | fndmd | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> dom g = z ) |
| 37 | 34 36 | eleqtrd | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> X e. z ) |
| 38 | 24 26 37 | rspcdva | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> Pred ( R , A , X ) C_ z ) |
| 39 | 38 36 | sseqtrrd | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> Pred ( R , A , X ) C_ dom g ) |
| 40 | fun2ssres | |- ( ( Fun F /\ g C_ F /\ Pred ( R , A , X ) C_ dom g ) -> ( F |` Pred ( R , A , X ) ) = ( g |` Pred ( R , A , X ) ) ) |
|
| 41 | 18 22 39 40 | syl3anc | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> ( F |` Pred ( R , A , X ) ) = ( g |` Pred ( R , A , X ) ) ) |
| 42 | vex | |- g e. _V |
|
| 43 | 42 | resex | |- ( g |` Pred ( R , A , X ) ) e. _V |
| 44 | 41 43 | eqeltrdi | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) ) ) -> ( F |` Pred ( R , A , X ) ) e. _V ) |
| 45 | 44 | expr | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> ( ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) -> ( F |` Pred ( R , A , X ) ) e. _V ) ) |
| 46 | 17 45 | syl5 | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> ( ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( w G ( g |` Pred ( R , A , w ) ) ) ) -> ( F |` Pred ( R , A , X ) ) e. _V ) ) |
| 47 | 46 | exlimdv | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> ( E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( w G ( g |` Pred ( R , A , w ) ) ) ) -> ( F |` Pred ( R , A , X ) ) e. _V ) ) |
| 48 | 16 47 | mpd | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) /\ ( <. X , ( F ` X ) >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> ( F |` Pred ( R , A , X ) ) e. _V ) |
| 49 | 10 48 | exlimddv | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> ( F |` Pred ( R , A , X ) ) e. _V ) |