This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "function" defined by well-founded recursion is indeed a function when the relation is a partial order. Avoids the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fprfung.1 | |- F = frecs ( R , A , G ) |
|
| Assertion | fprfung | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> Fun F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprfung.1 | |- F = frecs ( R , A , G ) |
|
| 2 | eqid | |- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 3 | 2 1 | fprlem1 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
| 4 | 2 1 3 | frrlem9 | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> Fun F ) |