This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a finite product into two parts. A version of fprodsplit using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodsplitf.kph | |- F/ k ph |
|
| fprodsplitf.in | |- ( ph -> ( A i^i B ) = (/) ) |
||
| fprodsplitf.un | |- ( ph -> U = ( A u. B ) ) |
||
| fprodsplitf.fi | |- ( ph -> U e. Fin ) |
||
| fprodsplitf.c | |- ( ( ph /\ k e. U ) -> C e. CC ) |
||
| Assertion | fprodsplitf | |- ( ph -> prod_ k e. U C = ( prod_ k e. A C x. prod_ k e. B C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodsplitf.kph | |- F/ k ph |
|
| 2 | fprodsplitf.in | |- ( ph -> ( A i^i B ) = (/) ) |
|
| 3 | fprodsplitf.un | |- ( ph -> U = ( A u. B ) ) |
|
| 4 | fprodsplitf.fi | |- ( ph -> U e. Fin ) |
|
| 5 | fprodsplitf.c | |- ( ( ph /\ k e. U ) -> C e. CC ) |
|
| 6 | nfv | |- F/ k j e. U |
|
| 7 | 1 6 | nfan | |- F/ k ( ph /\ j e. U ) |
| 8 | nfcsb1v | |- F/_ k [_ j / k ]_ C |
|
| 9 | 8 | nfel1 | |- F/ k [_ j / k ]_ C e. CC |
| 10 | 7 9 | nfim | |- F/ k ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) |
| 11 | eleq1w | |- ( k = j -> ( k e. U <-> j e. U ) ) |
|
| 12 | 11 | anbi2d | |- ( k = j -> ( ( ph /\ k e. U ) <-> ( ph /\ j e. U ) ) ) |
| 13 | csbeq1a | |- ( k = j -> C = [_ j / k ]_ C ) |
|
| 14 | 13 | eleq1d | |- ( k = j -> ( C e. CC <-> [_ j / k ]_ C e. CC ) ) |
| 15 | 12 14 | imbi12d | |- ( k = j -> ( ( ( ph /\ k e. U ) -> C e. CC ) <-> ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) ) ) |
| 16 | 10 15 5 | chvarfv | |- ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) |
| 17 | 2 3 4 16 | fprodsplit | |- ( ph -> prod_ j e. U [_ j / k ]_ C = ( prod_ j e. A [_ j / k ]_ C x. prod_ j e. B [_ j / k ]_ C ) ) |
| 18 | nfcv | |- F/_ j C |
|
| 19 | 18 8 13 | cbvprodi | |- prod_ k e. U C = prod_ j e. U [_ j / k ]_ C |
| 20 | 18 8 13 | cbvprodi | |- prod_ k e. A C = prod_ j e. A [_ j / k ]_ C |
| 21 | 18 8 13 | cbvprodi | |- prod_ k e. B C = prod_ j e. B [_ j / k ]_ C |
| 22 | 20 21 | oveq12i | |- ( prod_ k e. A C x. prod_ k e. B C ) = ( prod_ j e. A [_ j / k ]_ C x. prod_ j e. B [_ j / k ]_ C ) |
| 23 | 17 19 22 | 3eqtr4g | |- ( ph -> prod_ k e. U C = ( prod_ k e. A C x. prod_ k e. B C ) ) |