This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Well-founded recursion
fprfung
Metamath Proof Explorer
Description: A "function" defined by well-founded recursion is indeed a function when
the relation is a partial order. Avoids the axiom of replacement.
(Contributed by Scott Fenton , 18-Nov-2024)
Ref
Expression
Hypothesis
fprfung.1
⊢ F = frecs ⁡ R A G
Assertion
fprfung
⊢ R Fr A ∧ R Po A ∧ R Se A → Fun ⁡ F
Proof
Step
Hyp
Ref
Expression
1
fprfung.1
⊢ F = frecs ⁡ R A G
2
eqid
⊢ f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y = f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y
3
2 1
fprlem1
⊢ R Fr A ∧ R Po A ∧ R Se A ∧ g ∈ f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y ∧ h ∈ f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y → x g u ∧ x h v → u = v
4
2 1 3
frrlem9
⊢ R Fr A ∧ R Po A ∧ R Se A → Fun ⁡ F