This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that maps a pair to a class is a pair of ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fpr2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ) → 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ) | |
| 2 | prid1g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 , 𝐵 } ) | |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 4 | 1 3 | ffvelcdmd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ) |
| 5 | prid2g | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐴 , 𝐵 } ) | |
| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 7 | 1 6 | ffvelcdmd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) |
| 8 | ffn | ⊢ ( 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 → 𝐹 Fn { 𝐴 , 𝐵 } ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ) → 𝐹 Fn { 𝐴 , 𝐵 } ) |
| 10 | fnpr2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐹 Fn { 𝐴 , 𝐵 } ↔ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) | |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ) → ( 𝐹 Fn { 𝐴 , 𝐵 } ↔ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) |
| 12 | 9 11 | mpbid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ) → 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |
| 13 | 4 7 12 | 3jca | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) |
| 14 | 10 | biimpar | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) → 𝐹 Fn { 𝐴 , 𝐵 } ) |
| 15 | 14 | 3ad2antr3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) → 𝐹 Fn { 𝐴 , 𝐵 } ) |
| 16 | simpr3 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) → 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) | |
| 17 | 2 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 18 | simpr1 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ) | |
| 19 | 17 18 | opelxpd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ ( { 𝐴 , 𝐵 } × 𝐶 ) ) |
| 20 | 5 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 21 | simpr2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) | |
| 22 | 20 21 | opelxpd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) → 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 ∈ ( { 𝐴 , 𝐵 } × 𝐶 ) ) |
| 23 | 19 22 | prssd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ⊆ ( { 𝐴 , 𝐵 } × 𝐶 ) ) |
| 24 | 16 23 | eqsstrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) → 𝐹 ⊆ ( { 𝐴 , 𝐵 } × 𝐶 ) ) |
| 25 | dff2 | ⊢ ( 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ↔ ( 𝐹 Fn { 𝐴 , 𝐵 } ∧ 𝐹 ⊆ ( { 𝐴 , 𝐵 } × 𝐶 ) ) ) | |
| 26 | 15 24 25 | sylanbrc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) → 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ) |
| 27 | 13 26 | impbida | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐹 : { 𝐴 , 𝐵 } ⟶ 𝐶 ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐶 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ∧ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 , 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) ) |