This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fobigcup | |- Bigcup : _V -onto-> _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg | |- ( x e. _V -> U. x e. _V ) |
|
| 2 | 1 | rgen | |- A. x e. _V U. x e. _V |
| 3 | dfbigcup2 | |- Bigcup = ( x e. _V |-> U. x ) |
|
| 4 | 3 | mptfng | |- ( A. x e. _V U. x e. _V <-> Bigcup Fn _V ) |
| 5 | 2 4 | mpbi | |- Bigcup Fn _V |
| 6 | 3 | rnmpt | |- ran Bigcup = { y | E. x e. _V y = U. x } |
| 7 | vex | |- y e. _V |
|
| 8 | vsnex | |- { y } e. _V |
|
| 9 | unisnv | |- U. { y } = y |
|
| 10 | 9 | eqcomi | |- y = U. { y } |
| 11 | unieq | |- ( x = { y } -> U. x = U. { y } ) |
|
| 12 | 11 | rspceeqv | |- ( ( { y } e. _V /\ y = U. { y } ) -> E. x e. _V y = U. x ) |
| 13 | 8 10 12 | mp2an | |- E. x e. _V y = U. x |
| 14 | 7 13 | 2th | |- ( y e. _V <-> E. x e. _V y = U. x ) |
| 15 | 14 | eqabi | |- _V = { y | E. x e. _V y = U. x } |
| 16 | 6 15 | eqtr4i | |- ran Bigcup = _V |
| 17 | df-fo | |- ( Bigcup : _V -onto-> _V <-> ( Bigcup Fn _V /\ ran Bigcup = _V ) ) |
|
| 18 | 5 16 17 | mpbir2an | |- Bigcup : _V -onto-> _V |