This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017) (Revised by AV, 10-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptapd.a | |- ( ph -> A e. V ) |
|
| fmptapd.b | |- ( ph -> B e. W ) |
||
| fmptapd.s | |- ( ph -> ( R u. { A } ) = S ) |
||
| fmptapd.c | |- ( ( ph /\ x = A ) -> C = B ) |
||
| Assertion | fmptapd | |- ( ph -> ( ( x e. R |-> C ) u. { <. A , B >. } ) = ( x e. S |-> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptapd.a | |- ( ph -> A e. V ) |
|
| 2 | fmptapd.b | |- ( ph -> B e. W ) |
|
| 3 | fmptapd.s | |- ( ph -> ( R u. { A } ) = S ) |
|
| 4 | fmptapd.c | |- ( ( ph /\ x = A ) -> C = B ) |
|
| 5 | 4 1 2 | fmptsnd | |- ( ph -> { <. A , B >. } = ( x e. { A } |-> C ) ) |
| 6 | 5 | uneq2d | |- ( ph -> ( ( x e. R |-> C ) u. { <. A , B >. } ) = ( ( x e. R |-> C ) u. ( x e. { A } |-> C ) ) ) |
| 7 | mptun | |- ( x e. ( R u. { A } ) |-> C ) = ( ( x e. R |-> C ) u. ( x e. { A } |-> C ) ) |
|
| 8 | 7 | a1i | |- ( ph -> ( x e. ( R u. { A } ) |-> C ) = ( ( x e. R |-> C ) u. ( x e. { A } |-> C ) ) ) |
| 9 | 3 | mpteq1d | |- ( ph -> ( x e. ( R u. { A } ) |-> C ) = ( x e. S |-> C ) ) |
| 10 | 6 8 9 | 3eqtr2d | |- ( ph -> ( ( x e. R |-> C ) u. { <. A , B >. } ) = ( x e. S |-> C ) ) |