This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function F . (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
| flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
||
| flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
||
| fliftval.4 | |- ( x = Y -> A = C ) |
||
| fliftval.5 | |- ( x = Y -> B = D ) |
||
| fliftval.6 | |- ( ph -> Fun F ) |
||
| Assertion | fliftval | |- ( ( ph /\ Y e. X ) -> ( F ` C ) = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
| 2 | flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
|
| 3 | flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
|
| 4 | fliftval.4 | |- ( x = Y -> A = C ) |
|
| 5 | fliftval.5 | |- ( x = Y -> B = D ) |
|
| 6 | fliftval.6 | |- ( ph -> Fun F ) |
|
| 7 | 6 | adantr | |- ( ( ph /\ Y e. X ) -> Fun F ) |
| 8 | simpr | |- ( ( ph /\ Y e. X ) -> Y e. X ) |
|
| 9 | eqidd | |- ( ph -> D = D ) |
|
| 10 | eqidd | |- ( Y e. X -> C = C ) |
|
| 11 | 9 10 | anim12ci | |- ( ( ph /\ Y e. X ) -> ( C = C /\ D = D ) ) |
| 12 | 4 | eqeq2d | |- ( x = Y -> ( C = A <-> C = C ) ) |
| 13 | 5 | eqeq2d | |- ( x = Y -> ( D = B <-> D = D ) ) |
| 14 | 12 13 | anbi12d | |- ( x = Y -> ( ( C = A /\ D = B ) <-> ( C = C /\ D = D ) ) ) |
| 15 | 14 | rspcev | |- ( ( Y e. X /\ ( C = C /\ D = D ) ) -> E. x e. X ( C = A /\ D = B ) ) |
| 16 | 8 11 15 | syl2anc | |- ( ( ph /\ Y e. X ) -> E. x e. X ( C = A /\ D = B ) ) |
| 17 | 1 2 3 | fliftel | |- ( ph -> ( C F D <-> E. x e. X ( C = A /\ D = B ) ) ) |
| 18 | 17 | adantr | |- ( ( ph /\ Y e. X ) -> ( C F D <-> E. x e. X ( C = A /\ D = B ) ) ) |
| 19 | 16 18 | mpbird | |- ( ( ph /\ Y e. X ) -> C F D ) |
| 20 | funbrfv | |- ( Fun F -> ( C F D -> ( F ` C ) = D ) ) |
|
| 21 | 7 19 20 | sylc | |- ( ( ph /\ Y e. X ) -> ( F ` C ) = D ) |