This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimacnvinrn | |- ( Fun F -> ( `' F " A ) = ( `' F " ( A i^i ran F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inpreima | |- ( Fun F -> ( `' F " ( A i^i ran F ) ) = ( ( `' F " A ) i^i ( `' F " ran F ) ) ) |
|
| 2 | funforn | |- ( Fun F <-> F : dom F -onto-> ran F ) |
|
| 3 | fof | |- ( F : dom F -onto-> ran F -> F : dom F --> ran F ) |
|
| 4 | 2 3 | sylbi | |- ( Fun F -> F : dom F --> ran F ) |
| 5 | fimacnv | |- ( F : dom F --> ran F -> ( `' F " ran F ) = dom F ) |
|
| 6 | 4 5 | syl | |- ( Fun F -> ( `' F " ran F ) = dom F ) |
| 7 | 6 | ineq2d | |- ( Fun F -> ( ( `' F " A ) i^i ( `' F " ran F ) ) = ( ( `' F " A ) i^i dom F ) ) |
| 8 | cnvresima | |- ( `' ( F |` dom F ) " A ) = ( ( `' F " A ) i^i dom F ) |
|
| 9 | resdm2 | |- ( F |` dom F ) = `' `' F |
|
| 10 | funrel | |- ( Fun F -> Rel F ) |
|
| 11 | dfrel2 | |- ( Rel F <-> `' `' F = F ) |
|
| 12 | 10 11 | sylib | |- ( Fun F -> `' `' F = F ) |
| 13 | 9 12 | eqtrid | |- ( Fun F -> ( F |` dom F ) = F ) |
| 14 | 13 | cnveqd | |- ( Fun F -> `' ( F |` dom F ) = `' F ) |
| 15 | 14 | imaeq1d | |- ( Fun F -> ( `' ( F |` dom F ) " A ) = ( `' F " A ) ) |
| 16 | 8 15 | eqtr3id | |- ( Fun F -> ( ( `' F " A ) i^i dom F ) = ( `' F " A ) ) |
| 17 | 1 7 16 | 3eqtrrd | |- ( Fun F -> ( `' F " A ) = ( `' F " ( A i^i ran F ) ) ) |