This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimacnvinrn | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ 𝐴 ) = ( ◡ 𝐹 “ ( 𝐴 ∩ ran 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inpreima | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝐴 ∩ ran 𝐹 ) ) = ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) ) | |
| 2 | funforn | ⊢ ( Fun 𝐹 ↔ 𝐹 : dom 𝐹 –onto→ ran 𝐹 ) | |
| 3 | fof | ⊢ ( 𝐹 : dom 𝐹 –onto→ ran 𝐹 → 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) | |
| 4 | 2 3 | sylbi | ⊢ ( Fun 𝐹 → 𝐹 : dom 𝐹 ⟶ ran 𝐹 ) |
| 5 | fimacnv | ⊢ ( 𝐹 : dom 𝐹 ⟶ ran 𝐹 → ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 ) | |
| 6 | 4 5 | syl | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 ) |
| 7 | 6 | ineq2d | ⊢ ( Fun 𝐹 → ( ( ◡ 𝐹 “ 𝐴 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( ( ◡ 𝐹 “ 𝐴 ) ∩ dom 𝐹 ) ) |
| 8 | cnvresima | ⊢ ( ◡ ( 𝐹 ↾ dom 𝐹 ) “ 𝐴 ) = ( ( ◡ 𝐹 “ 𝐴 ) ∩ dom 𝐹 ) | |
| 9 | resdm2 | ⊢ ( 𝐹 ↾ dom 𝐹 ) = ◡ ◡ 𝐹 | |
| 10 | funrel | ⊢ ( Fun 𝐹 → Rel 𝐹 ) | |
| 11 | dfrel2 | ⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) | |
| 12 | 10 11 | sylib | ⊢ ( Fun 𝐹 → ◡ ◡ 𝐹 = 𝐹 ) |
| 13 | 9 12 | eqtrid | ⊢ ( Fun 𝐹 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) |
| 14 | 13 | cnveqd | ⊢ ( Fun 𝐹 → ◡ ( 𝐹 ↾ dom 𝐹 ) = ◡ 𝐹 ) |
| 15 | 14 | imaeq1d | ⊢ ( Fun 𝐹 → ( ◡ ( 𝐹 ↾ dom 𝐹 ) “ 𝐴 ) = ( ◡ 𝐹 “ 𝐴 ) ) |
| 16 | 8 15 | eqtr3id | ⊢ ( Fun 𝐹 → ( ( ◡ 𝐹 “ 𝐴 ) ∩ dom 𝐹 ) = ( ◡ 𝐹 “ 𝐴 ) ) |
| 17 | 1 7 16 | 3eqtrrd | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ 𝐴 ) = ( ◡ 𝐹 “ ( 𝐴 ∩ ran 𝐹 ) ) ) |