This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a fully faithful functor to also be a fully faithful functor into the restriction. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ffthres2c.a | |- A = ( Base ` C ) |
|
| ffthres2c.e | |- E = ( D |`s S ) |
||
| ffthres2c.d | |- ( ph -> D e. Cat ) |
||
| ffthres2c.r | |- ( ph -> S e. V ) |
||
| ffthres2c.1 | |- ( ph -> F : A --> S ) |
||
| Assertion | ffthres2c | |- ( ph -> ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> F ( ( C Full E ) i^i ( C Faith E ) ) G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffthres2c.a | |- A = ( Base ` C ) |
|
| 2 | ffthres2c.e | |- E = ( D |`s S ) |
|
| 3 | ffthres2c.d | |- ( ph -> D e. Cat ) |
|
| 4 | ffthres2c.r | |- ( ph -> S e. V ) |
|
| 5 | ffthres2c.1 | |- ( ph -> F : A --> S ) |
|
| 6 | 1 2 3 4 5 | fullres2c | |- ( ph -> ( F ( C Full D ) G <-> F ( C Full E ) G ) ) |
| 7 | 1 2 3 4 5 | fthres2c | |- ( ph -> ( F ( C Faith D ) G <-> F ( C Faith E ) G ) ) |
| 8 | 6 7 | anbi12d | |- ( ph -> ( ( F ( C Full D ) G /\ F ( C Faith D ) G ) <-> ( F ( C Full E ) G /\ F ( C Faith E ) G ) ) ) |
| 9 | brin | |- ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> ( F ( C Full D ) G /\ F ( C Faith D ) G ) ) |
|
| 10 | brin | |- ( F ( ( C Full E ) i^i ( C Faith E ) ) G <-> ( F ( C Full E ) G /\ F ( C Faith E ) G ) ) |
|
| 11 | 8 9 10 | 3bitr4g | |- ( ph -> ( F ( ( C Full D ) i^i ( C Faith D ) ) G <-> F ( ( C Full E ) i^i ( C Faith E ) ) G ) ) |