This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for fcores . (Contributed by AV, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | |- ( ph -> F : A --> B ) |
|
| fcores.e | |- E = ( ran F i^i C ) |
||
| fcores.p | |- P = ( `' F " C ) |
||
| fcores.x | |- X = ( F |` P ) |
||
| fcores.g | |- ( ph -> G : C --> D ) |
||
| fcores.y | |- Y = ( G |` E ) |
||
| Assertion | fcoreslem4 | |- ( ph -> ( Y o. X ) Fn P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | |- ( ph -> F : A --> B ) |
|
| 2 | fcores.e | |- E = ( ran F i^i C ) |
|
| 3 | fcores.p | |- P = ( `' F " C ) |
|
| 4 | fcores.x | |- X = ( F |` P ) |
|
| 5 | fcores.g | |- ( ph -> G : C --> D ) |
|
| 6 | fcores.y | |- Y = ( G |` E ) |
|
| 7 | 5 | ffnd | |- ( ph -> G Fn C ) |
| 8 | 2 | a1i | |- ( ph -> E = ( ran F i^i C ) ) |
| 9 | inss2 | |- ( ran F i^i C ) C_ C |
|
| 10 | 8 9 | eqsstrdi | |- ( ph -> E C_ C ) |
| 11 | 7 10 | fnssresd | |- ( ph -> ( G |` E ) Fn E ) |
| 12 | 6 | fneq1i | |- ( Y Fn E <-> ( G |` E ) Fn E ) |
| 13 | 11 12 | sylibr | |- ( ph -> Y Fn E ) |
| 14 | 1 2 3 4 | fcoreslem3 | |- ( ph -> X : P -onto-> E ) |
| 15 | fofn | |- ( X : P -onto-> E -> X Fn P ) |
|
| 16 | 14 15 | syl | |- ( ph -> X Fn P ) |
| 17 | 1 2 3 4 | fcoreslem2 | |- ( ph -> ran X = E ) |
| 18 | eqimss | |- ( ran X = E -> ran X C_ E ) |
|
| 19 | 17 18 | syl | |- ( ph -> ran X C_ E ) |
| 20 | fnco | |- ( ( Y Fn E /\ X Fn P /\ ran X C_ E ) -> ( Y o. X ) Fn P ) |
|
| 21 | 13 16 19 20 | syl3anc | |- ( ph -> ( Y o. X ) Fn P ) |