This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for fcores . (Contributed by AV, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | ||
| fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | ||
| fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | ||
| fcores.g | ⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) | ||
| fcores.y | ⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) | ||
| Assertion | fcoreslem4 | ⊢ ( 𝜑 → ( 𝑌 ∘ 𝑋 ) Fn 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | |
| 3 | fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | |
| 4 | fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | |
| 5 | fcores.g | ⊢ ( 𝜑 → 𝐺 : 𝐶 ⟶ 𝐷 ) | |
| 6 | fcores.y | ⊢ 𝑌 = ( 𝐺 ↾ 𝐸 ) | |
| 7 | 5 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐶 ) |
| 8 | 2 | a1i | ⊢ ( 𝜑 → 𝐸 = ( ran 𝐹 ∩ 𝐶 ) ) |
| 9 | inss2 | ⊢ ( ran 𝐹 ∩ 𝐶 ) ⊆ 𝐶 | |
| 10 | 8 9 | eqsstrdi | ⊢ ( 𝜑 → 𝐸 ⊆ 𝐶 ) |
| 11 | 7 10 | fnssresd | ⊢ ( 𝜑 → ( 𝐺 ↾ 𝐸 ) Fn 𝐸 ) |
| 12 | 6 | fneq1i | ⊢ ( 𝑌 Fn 𝐸 ↔ ( 𝐺 ↾ 𝐸 ) Fn 𝐸 ) |
| 13 | 11 12 | sylibr | ⊢ ( 𝜑 → 𝑌 Fn 𝐸 ) |
| 14 | 1 2 3 4 | fcoreslem3 | ⊢ ( 𝜑 → 𝑋 : 𝑃 –onto→ 𝐸 ) |
| 15 | fofn | ⊢ ( 𝑋 : 𝑃 –onto→ 𝐸 → 𝑋 Fn 𝑃 ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → 𝑋 Fn 𝑃 ) |
| 17 | 1 2 3 4 | fcoreslem2 | ⊢ ( 𝜑 → ran 𝑋 = 𝐸 ) |
| 18 | eqimss | ⊢ ( ran 𝑋 = 𝐸 → ran 𝑋 ⊆ 𝐸 ) | |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → ran 𝑋 ⊆ 𝐸 ) |
| 20 | fnco | ⊢ ( ( 𝑌 Fn 𝐸 ∧ 𝑋 Fn 𝑃 ∧ ran 𝑋 ⊆ 𝐸 ) → ( 𝑌 ∘ 𝑋 ) Fn 𝑃 ) | |
| 21 | 13 16 19 20 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 ∘ 𝑋 ) Fn 𝑃 ) |