This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for fcores . (Contributed by AV, 13-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | |- ( ph -> F : A --> B ) |
|
| fcores.e | |- E = ( ran F i^i C ) |
||
| fcores.p | |- P = ( `' F " C ) |
||
| fcores.x | |- X = ( F |` P ) |
||
| Assertion | fcoreslem3 | |- ( ph -> X : P -onto-> E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | |- ( ph -> F : A --> B ) |
|
| 2 | fcores.e | |- E = ( ran F i^i C ) |
|
| 3 | fcores.p | |- P = ( `' F " C ) |
|
| 4 | fcores.x | |- X = ( F |` P ) |
|
| 5 | 1 | ffnd | |- ( ph -> F Fn A ) |
| 6 | 2 | a1i | |- ( ph -> E = ( ran F i^i C ) ) |
| 7 | 3 | a1i | |- ( ph -> P = ( `' F " C ) ) |
| 8 | 5 6 7 | rescnvimafod | |- ( ph -> ( F |` P ) : P -onto-> E ) |
| 9 | foeq1 | |- ( X = ( F |` P ) -> ( X : P -onto-> E <-> ( F |` P ) : P -onto-> E ) ) |
|
| 10 | 4 9 | mp1i | |- ( ph -> ( X : P -onto-> E <-> ( F |` P ) : P -onto-> E ) ) |
| 11 | 8 10 | mpbird | |- ( ph -> X : P -onto-> E ) |