This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for fcores . (Contributed by AV, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | |- ( ph -> F : A --> B ) |
|
| fcores.e | |- E = ( ran F i^i C ) |
||
| fcores.p | |- P = ( `' F " C ) |
||
| fcores.x | |- X = ( F |` P ) |
||
| Assertion | fcoreslem2 | |- ( ph -> ran X = E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | |- ( ph -> F : A --> B ) |
|
| 2 | fcores.e | |- E = ( ran F i^i C ) |
|
| 3 | fcores.p | |- P = ( `' F " C ) |
|
| 4 | fcores.x | |- X = ( F |` P ) |
|
| 5 | df-ima | |- ( F " P ) = ran ( F |` P ) |
|
| 6 | 4 | rneqi | |- ran X = ran ( F |` P ) |
| 7 | 6 | eqcomi | |- ran ( F |` P ) = ran X |
| 8 | 7 | a1i | |- ( ph -> ran ( F |` P ) = ran X ) |
| 9 | 5 8 | eqtr2id | |- ( ph -> ran X = ( F " P ) ) |
| 10 | 1 2 3 | fcoreslem1 | |- ( ph -> P = ( `' F " E ) ) |
| 11 | 10 | imaeq2d | |- ( ph -> ( F " P ) = ( F " ( `' F " E ) ) ) |
| 12 | 1 | ffund | |- ( ph -> Fun F ) |
| 13 | funimacnv | |- ( Fun F -> ( F " ( `' F " E ) ) = ( E i^i ran F ) ) |
|
| 14 | 12 13 | syl | |- ( ph -> ( F " ( `' F " E ) ) = ( E i^i ran F ) ) |
| 15 | inss1 | |- ( ran F i^i C ) C_ ran F |
|
| 16 | 2 15 | eqsstri | |- E C_ ran F |
| 17 | 16 | a1i | |- ( ph -> E C_ ran F ) |
| 18 | dfss2 | |- ( E C_ ran F <-> ( E i^i ran F ) = E ) |
|
| 19 | 17 18 | sylib | |- ( ph -> ( E i^i ran F ) = E ) |
| 20 | 14 19 | eqtrd | |- ( ph -> ( F " ( `' F " E ) ) = E ) |
| 21 | 9 11 20 | 3eqtrd | |- ( ph -> ran X = E ) |