This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fconstfv
Metamath Proof Explorer
Description: A constant function expressed in terms of its functionality, domain, and
value. See also fconst2 . (Contributed by NM , 27-Aug-2004) (Proof
shortened by OpenAI , 25-Mar-2020)
Ref
Expression
Assertion
fconstfv
⊢ F : A ⟶ B ↔ F Fn A ∧ ∀ x ∈ A F ⁡ x = B
Proof
Step
Hyp
Ref
Expression
1
ffnfv
⊢ F : A ⟶ B ↔ F Fn A ∧ ∀ x ∈ A F ⁡ x ∈ B
2
fvex
⊢ F ⁡ x ∈ V
3
2
elsn
⊢ F ⁡ x ∈ B ↔ F ⁡ x = B
4
3
ralbii
⊢ ∀ x ∈ A F ⁡ x ∈ B ↔ ∀ x ∈ A F ⁡ x = B
5
4
anbi2i
⊢ F Fn A ∧ ∀ x ∈ A F ⁡ x ∈ B ↔ F Fn A ∧ ∀ x ∈ A F ⁡ x = B
6
1 5
bitri
⊢ F : A ⟶ B ↔ F Fn A ∧ ∀ x ∈ A F ⁡ x = B