This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The factorial function grows faster than powers and exponentiations. If we consider K and M to be constants, the right-hand side of the inequality is a constant times N -factorial. (Contributed by NM, 24-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | faclbnd5 | |- ( ( N e. NN0 /\ K e. NN0 /\ M e. NN ) -> ( ( N ^ K ) x. ( M ^ N ) ) < ( ( 2 x. ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) x. ( ! ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 2 | reexpcl | |- ( ( N e. RR /\ K e. NN0 ) -> ( N ^ K ) e. RR ) |
|
| 3 | 1 2 | sylan | |- ( ( N e. NN0 /\ K e. NN0 ) -> ( N ^ K ) e. RR ) |
| 4 | 3 | ancoms | |- ( ( K e. NN0 /\ N e. NN0 ) -> ( N ^ K ) e. RR ) |
| 5 | nnre | |- ( M e. NN -> M e. RR ) |
|
| 6 | reexpcl | |- ( ( M e. RR /\ N e. NN0 ) -> ( M ^ N ) e. RR ) |
|
| 7 | 5 6 | sylan | |- ( ( M e. NN /\ N e. NN0 ) -> ( M ^ N ) e. RR ) |
| 8 | remulcl | |- ( ( ( N ^ K ) e. RR /\ ( M ^ N ) e. RR ) -> ( ( N ^ K ) x. ( M ^ N ) ) e. RR ) |
|
| 9 | 4 7 8 | syl2an | |- ( ( ( K e. NN0 /\ N e. NN0 ) /\ ( M e. NN /\ N e. NN0 ) ) -> ( ( N ^ K ) x. ( M ^ N ) ) e. RR ) |
| 10 | 9 | anandirs | |- ( ( ( K e. NN0 /\ M e. NN ) /\ N e. NN0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) e. RR ) |
| 11 | 2nn | |- 2 e. NN |
|
| 12 | nn0sqcl | |- ( K e. NN0 -> ( K ^ 2 ) e. NN0 ) |
|
| 13 | nnexpcl | |- ( ( 2 e. NN /\ ( K ^ 2 ) e. NN0 ) -> ( 2 ^ ( K ^ 2 ) ) e. NN ) |
|
| 14 | 11 12 13 | sylancr | |- ( K e. NN0 -> ( 2 ^ ( K ^ 2 ) ) e. NN ) |
| 15 | nnnn0 | |- ( M e. NN -> M e. NN0 ) |
|
| 16 | nn0addcl | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( M + K ) e. NN0 ) |
|
| 17 | 16 | ancoms | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( M + K ) e. NN0 ) |
| 18 | 15 17 | sylan2 | |- ( ( K e. NN0 /\ M e. NN ) -> ( M + K ) e. NN0 ) |
| 19 | nnexpcl | |- ( ( M e. NN /\ ( M + K ) e. NN0 ) -> ( M ^ ( M + K ) ) e. NN ) |
|
| 20 | 18 19 | sylan2 | |- ( ( M e. NN /\ ( K e. NN0 /\ M e. NN ) ) -> ( M ^ ( M + K ) ) e. NN ) |
| 21 | 20 | anabss7 | |- ( ( K e. NN0 /\ M e. NN ) -> ( M ^ ( M + K ) ) e. NN ) |
| 22 | nnmulcl | |- ( ( ( 2 ^ ( K ^ 2 ) ) e. NN /\ ( M ^ ( M + K ) ) e. NN ) -> ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. NN ) |
|
| 23 | 14 21 22 | syl2an2r | |- ( ( K e. NN0 /\ M e. NN ) -> ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. NN ) |
| 24 | 23 | nnred | |- ( ( K e. NN0 /\ M e. NN ) -> ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. RR ) |
| 25 | faccl | |- ( N e. NN0 -> ( ! ` N ) e. NN ) |
|
| 26 | 25 | nnred | |- ( N e. NN0 -> ( ! ` N ) e. RR ) |
| 27 | remulcl | |- ( ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. RR /\ ( ! ` N ) e. RR ) -> ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) e. RR ) |
|
| 28 | 24 26 27 | syl2an | |- ( ( ( K e. NN0 /\ M e. NN ) /\ N e. NN0 ) -> ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) e. RR ) |
| 29 | 2re | |- 2 e. RR |
|
| 30 | remulcl | |- ( ( 2 e. RR /\ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) e. RR ) -> ( 2 x. ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) e. RR ) |
|
| 31 | 29 28 30 | sylancr | |- ( ( ( K e. NN0 /\ M e. NN ) /\ N e. NN0 ) -> ( 2 x. ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) e. RR ) |
| 32 | faclbnd4 | |- ( ( N e. NN0 /\ K e. NN0 /\ M e. NN0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
|
| 33 | 15 32 | syl3an3 | |- ( ( N e. NN0 /\ K e. NN0 /\ M e. NN ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
| 34 | 33 | 3coml | |- ( ( K e. NN0 /\ M e. NN /\ N e. NN0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
| 35 | 34 | 3expa | |- ( ( ( K e. NN0 /\ M e. NN ) /\ N e. NN0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) <_ ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
| 36 | 1lt2 | |- 1 < 2 |
|
| 37 | nnmulcl | |- ( ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. NN /\ ( ! ` N ) e. NN ) -> ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) e. NN ) |
|
| 38 | 23 25 37 | syl2an | |- ( ( ( K e. NN0 /\ M e. NN ) /\ N e. NN0 ) -> ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) e. NN ) |
| 39 | 38 | nngt0d | |- ( ( ( K e. NN0 /\ M e. NN ) /\ N e. NN0 ) -> 0 < ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) |
| 40 | ltmulgt12 | |- ( ( ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) e. RR /\ 2 e. RR /\ 0 < ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) -> ( 1 < 2 <-> ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) < ( 2 x. ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) ) ) |
|
| 41 | 29 40 | mp3an2 | |- ( ( ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) e. RR /\ 0 < ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) -> ( 1 < 2 <-> ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) < ( 2 x. ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) ) ) |
| 42 | 28 39 41 | syl2anc | |- ( ( ( K e. NN0 /\ M e. NN ) /\ N e. NN0 ) -> ( 1 < 2 <-> ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) < ( 2 x. ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) ) ) |
| 43 | 36 42 | mpbii | |- ( ( ( K e. NN0 /\ M e. NN ) /\ N e. NN0 ) -> ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) < ( 2 x. ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) ) |
| 44 | 10 28 31 35 43 | lelttrd | |- ( ( ( K e. NN0 /\ M e. NN ) /\ N e. NN0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) < ( 2 x. ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) ) |
| 45 | 2cn | |- 2 e. CC |
|
| 46 | 23 | nncnd | |- ( ( K e. NN0 /\ M e. NN ) -> ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. CC ) |
| 47 | 25 | nncnd | |- ( N e. NN0 -> ( ! ` N ) e. CC ) |
| 48 | mulass | |- ( ( 2 e. CC /\ ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) e. CC /\ ( ! ` N ) e. CC ) -> ( ( 2 x. ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) x. ( ! ` N ) ) = ( 2 x. ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) ) |
|
| 49 | 45 46 47 48 | mp3an3an | |- ( ( ( K e. NN0 /\ M e. NN ) /\ N e. NN0 ) -> ( ( 2 x. ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) x. ( ! ` N ) ) = ( 2 x. ( ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) x. ( ! ` N ) ) ) ) |
| 50 | 44 49 | breqtrrd | |- ( ( ( K e. NN0 /\ M e. NN ) /\ N e. NN0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) < ( ( 2 x. ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) x. ( ! ` N ) ) ) |
| 51 | 50 | 3impa | |- ( ( K e. NN0 /\ M e. NN /\ N e. NN0 ) -> ( ( N ^ K ) x. ( M ^ N ) ) < ( ( 2 x. ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) x. ( ! ` N ) ) ) |
| 52 | 51 | 3comr | |- ( ( N e. NN0 /\ K e. NN0 /\ M e. NN ) -> ( ( N ^ K ) x. ( M ^ N ) ) < ( ( 2 x. ( ( 2 ^ ( K ^ 2 ) ) x. ( M ^ ( M + K ) ) ) ) x. ( ! ` N ) ) ) |