This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two one-to-one functions with disjoint domains and codomains. (Contributed by BTernaryTau, 3-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1un | |- ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( F u. G ) : ( A u. C ) -1-1-> ( B u. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
| 2 | 1 | frnd | |- ( F : A -1-1-> B -> ran F C_ B ) |
| 3 | f1f | |- ( G : C -1-1-> D -> G : C --> D ) |
|
| 4 | 3 | frnd | |- ( G : C -1-1-> D -> ran G C_ D ) |
| 5 | unss12 | |- ( ( ran F C_ B /\ ran G C_ D ) -> ( ran F u. ran G ) C_ ( B u. D ) ) |
|
| 6 | 2 4 5 | syl2an | |- ( ( F : A -1-1-> B /\ G : C -1-1-> D ) -> ( ran F u. ran G ) C_ ( B u. D ) ) |
| 7 | f1f1orn | |- ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) |
|
| 8 | f1f1orn | |- ( G : C -1-1-> D -> G : C -1-1-onto-> ran G ) |
|
| 9 | 7 8 | anim12i | |- ( ( F : A -1-1-> B /\ G : C -1-1-> D ) -> ( F : A -1-1-onto-> ran F /\ G : C -1-1-onto-> ran G ) ) |
| 10 | simprl | |- ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( A i^i C ) = (/) ) |
|
| 11 | ss2in | |- ( ( ran F C_ B /\ ran G C_ D ) -> ( ran F i^i ran G ) C_ ( B i^i D ) ) |
|
| 12 | 2 4 11 | syl2an | |- ( ( F : A -1-1-> B /\ G : C -1-1-> D ) -> ( ran F i^i ran G ) C_ ( B i^i D ) ) |
| 13 | sseq0 | |- ( ( ( ran F i^i ran G ) C_ ( B i^i D ) /\ ( B i^i D ) = (/) ) -> ( ran F i^i ran G ) = (/) ) |
|
| 14 | 12 13 | sylan | |- ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( B i^i D ) = (/) ) -> ( ran F i^i ran G ) = (/) ) |
| 15 | 14 | adantrl | |- ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( ran F i^i ran G ) = (/) ) |
| 16 | 10 15 | jca | |- ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( ( A i^i C ) = (/) /\ ( ran F i^i ran G ) = (/) ) ) |
| 17 | f1oun | |- ( ( ( F : A -1-1-onto-> ran F /\ G : C -1-1-onto-> ran G ) /\ ( ( A i^i C ) = (/) /\ ( ran F i^i ran G ) = (/) ) ) -> ( F u. G ) : ( A u. C ) -1-1-onto-> ( ran F u. ran G ) ) |
|
| 18 | 9 16 17 | syl2an2r | |- ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( F u. G ) : ( A u. C ) -1-1-onto-> ( ran F u. ran G ) ) |
| 19 | f1of1 | |- ( ( F u. G ) : ( A u. C ) -1-1-onto-> ( ran F u. ran G ) -> ( F u. G ) : ( A u. C ) -1-1-> ( ran F u. ran G ) ) |
|
| 20 | 18 19 | syl | |- ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( F u. G ) : ( A u. C ) -1-1-> ( ran F u. ran G ) ) |
| 21 | f1ss | |- ( ( ( F u. G ) : ( A u. C ) -1-1-> ( ran F u. ran G ) /\ ( ran F u. ran G ) C_ ( B u. D ) ) -> ( F u. G ) : ( A u. C ) -1-1-> ( B u. D ) ) |
|
| 22 | 21 | ancoms | |- ( ( ( ran F u. ran G ) C_ ( B u. D ) /\ ( F u. G ) : ( A u. C ) -1-1-> ( ran F u. ran G ) ) -> ( F u. G ) : ( A u. C ) -1-1-> ( B u. D ) ) |
| 23 | 6 20 22 | syl2an2r | |- ( ( ( F : A -1-1-> B /\ G : C -1-1-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( F u. G ) : ( A u. C ) -1-1-> ( B u. D ) ) |