This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1orescnv | |- ( ( Fun `' F /\ ( F |` R ) : R -1-1-onto-> P ) -> ( `' F |` P ) : P -1-1-onto-> R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv | |- ( ( F |` R ) : R -1-1-onto-> P -> `' ( F |` R ) : P -1-1-onto-> R ) |
|
| 2 | 1 | adantl | |- ( ( Fun `' F /\ ( F |` R ) : R -1-1-onto-> P ) -> `' ( F |` R ) : P -1-1-onto-> R ) |
| 3 | funcnvres | |- ( Fun `' F -> `' ( F |` R ) = ( `' F |` ( F " R ) ) ) |
|
| 4 | df-ima | |- ( F " R ) = ran ( F |` R ) |
|
| 5 | dff1o5 | |- ( ( F |` R ) : R -1-1-onto-> P <-> ( ( F |` R ) : R -1-1-> P /\ ran ( F |` R ) = P ) ) |
|
| 6 | 5 | simprbi | |- ( ( F |` R ) : R -1-1-onto-> P -> ran ( F |` R ) = P ) |
| 7 | 4 6 | eqtrid | |- ( ( F |` R ) : R -1-1-onto-> P -> ( F " R ) = P ) |
| 8 | 7 | reseq2d | |- ( ( F |` R ) : R -1-1-onto-> P -> ( `' F |` ( F " R ) ) = ( `' F |` P ) ) |
| 9 | 3 8 | sylan9eq | |- ( ( Fun `' F /\ ( F |` R ) : R -1-1-onto-> P ) -> `' ( F |` R ) = ( `' F |` P ) ) |
| 10 | 9 | f1oeq1d | |- ( ( Fun `' F /\ ( F |` R ) : R -1-1-onto-> P ) -> ( `' ( F |` R ) : P -1-1-onto-> R <-> ( `' F |` P ) : P -1-1-onto-> R ) ) |
| 11 | 2 10 | mpbid | |- ( ( Fun `' F /\ ( F |` R ) : R -1-1-onto-> P ) -> ( `' F |` P ) : P -1-1-onto-> R ) |