This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1orescnv | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝑅 ) : 𝑅 –1-1-onto→ 𝑃 ) → ( ◡ 𝐹 ↾ 𝑃 ) : 𝑃 –1-1-onto→ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv | ⊢ ( ( 𝐹 ↾ 𝑅 ) : 𝑅 –1-1-onto→ 𝑃 → ◡ ( 𝐹 ↾ 𝑅 ) : 𝑃 –1-1-onto→ 𝑅 ) | |
| 2 | 1 | adantl | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝑅 ) : 𝑅 –1-1-onto→ 𝑃 ) → ◡ ( 𝐹 ↾ 𝑅 ) : 𝑃 –1-1-onto→ 𝑅 ) |
| 3 | funcnvres | ⊢ ( Fun ◡ 𝐹 → ◡ ( 𝐹 ↾ 𝑅 ) = ( ◡ 𝐹 ↾ ( 𝐹 “ 𝑅 ) ) ) | |
| 4 | df-ima | ⊢ ( 𝐹 “ 𝑅 ) = ran ( 𝐹 ↾ 𝑅 ) | |
| 5 | dff1o5 | ⊢ ( ( 𝐹 ↾ 𝑅 ) : 𝑅 –1-1-onto→ 𝑃 ↔ ( ( 𝐹 ↾ 𝑅 ) : 𝑅 –1-1→ 𝑃 ∧ ran ( 𝐹 ↾ 𝑅 ) = 𝑃 ) ) | |
| 6 | 5 | simprbi | ⊢ ( ( 𝐹 ↾ 𝑅 ) : 𝑅 –1-1-onto→ 𝑃 → ran ( 𝐹 ↾ 𝑅 ) = 𝑃 ) |
| 7 | 4 6 | eqtrid | ⊢ ( ( 𝐹 ↾ 𝑅 ) : 𝑅 –1-1-onto→ 𝑃 → ( 𝐹 “ 𝑅 ) = 𝑃 ) |
| 8 | 7 | reseq2d | ⊢ ( ( 𝐹 ↾ 𝑅 ) : 𝑅 –1-1-onto→ 𝑃 → ( ◡ 𝐹 ↾ ( 𝐹 “ 𝑅 ) ) = ( ◡ 𝐹 ↾ 𝑃 ) ) |
| 9 | 3 8 | sylan9eq | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝑅 ) : 𝑅 –1-1-onto→ 𝑃 ) → ◡ ( 𝐹 ↾ 𝑅 ) = ( ◡ 𝐹 ↾ 𝑃 ) ) |
| 10 | 9 | f1oeq1d | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝑅 ) : 𝑅 –1-1-onto→ 𝑃 ) → ( ◡ ( 𝐹 ↾ 𝑅 ) : 𝑃 –1-1-onto→ 𝑅 ↔ ( ◡ 𝐹 ↾ 𝑃 ) : 𝑃 –1-1-onto→ 𝑅 ) ) |
| 11 | 2 10 | mpbid | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝑅 ) : 𝑅 –1-1-onto→ 𝑃 ) → ( ◡ 𝐹 ↾ 𝑃 ) : 𝑃 –1-1-onto→ 𝑅 ) |