This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | brfvopab.1 | |- ( X e. _V -> ( F ` X ) = { <. y , z >. | ph } ) |
|
| Assertion | brfvopab | |- ( A ( F ` X ) B -> ( X e. _V /\ A e. _V /\ B e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brfvopab.1 | |- ( X e. _V -> ( F ` X ) = { <. y , z >. | ph } ) |
|
| 2 | 1 | breqd | |- ( X e. _V -> ( A ( F ` X ) B <-> A { <. y , z >. | ph } B ) ) |
| 3 | brabv | |- ( A { <. y , z >. | ph } B -> ( A e. _V /\ B e. _V ) ) |
|
| 4 | 2 3 | biimtrdi | |- ( X e. _V -> ( A ( F ` X ) B -> ( A e. _V /\ B e. _V ) ) ) |
| 5 | 4 | imdistani | |- ( ( X e. _V /\ A ( F ` X ) B ) -> ( X e. _V /\ ( A e. _V /\ B e. _V ) ) ) |
| 6 | 3anass | |- ( ( X e. _V /\ A e. _V /\ B e. _V ) <-> ( X e. _V /\ ( A e. _V /\ B e. _V ) ) ) |
|
| 7 | 5 6 | sylibr | |- ( ( X e. _V /\ A ( F ` X ) B ) -> ( X e. _V /\ A e. _V /\ B e. _V ) ) |
| 8 | 7 | ex | |- ( X e. _V -> ( A ( F ` X ) B -> ( X e. _V /\ A e. _V /\ B e. _V ) ) ) |
| 9 | fvprc | |- ( -. X e. _V -> ( F ` X ) = (/) ) |
|
| 10 | breq | |- ( ( F ` X ) = (/) -> ( A ( F ` X ) B <-> A (/) B ) ) |
|
| 11 | br0 | |- -. A (/) B |
|
| 12 | 11 | pm2.21i | |- ( A (/) B -> ( X e. _V /\ A e. _V /\ B e. _V ) ) |
| 13 | 10 12 | biimtrdi | |- ( ( F ` X ) = (/) -> ( A ( F ` X ) B -> ( X e. _V /\ A e. _V /\ B e. _V ) ) ) |
| 14 | 9 13 | syl | |- ( -. X e. _V -> ( A ( F ` X ) B -> ( X e. _V /\ A e. _V /\ B e. _V ) ) ) |
| 15 | 8 14 | pm2.61i | |- ( A ( F ` X ) B -> ( X e. _V /\ A e. _V /\ B e. _V ) ) |