This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the range of F equals the domain of G , then the composition ( G o. F ) is bijective iff F and G are both bijective. Symmetric version of f1ocof1ob including the fact that F is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024) (Proof shortened by AV, 7-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocof1ob2 | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -1-1-onto-> D <-> ( F : A -1-1-onto-> C /\ G : C -1-1-onto-> D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocof1ob | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -1-1-onto-> D <-> ( F : A -1-1-> C /\ G : C -1-1-onto-> D ) ) ) |
|
| 2 | f1f1orn | |- ( F : A -1-1-> C -> F : A -1-1-onto-> ran F ) |
|
| 3 | f1oeq3 | |- ( ran F = C -> ( F : A -1-1-onto-> ran F <-> F : A -1-1-onto-> C ) ) |
|
| 4 | 2 3 | imbitrid | |- ( ran F = C -> ( F : A -1-1-> C -> F : A -1-1-onto-> C ) ) |
| 5 | 4 | 3ad2ant3 | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( F : A -1-1-> C -> F : A -1-1-onto-> C ) ) |
| 6 | f1of1 | |- ( F : A -1-1-onto-> C -> F : A -1-1-> C ) |
|
| 7 | 5 6 | impbid1 | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( F : A -1-1-> C <-> F : A -1-1-onto-> C ) ) |
| 8 | 7 | anbi1d | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( F : A -1-1-> C /\ G : C -1-1-onto-> D ) <-> ( F : A -1-1-onto-> C /\ G : C -1-1-onto-> D ) ) ) |
| 9 | 1 8 | bitrd | |- ( ( F : A --> B /\ G : C --> D /\ ran F = C ) -> ( ( G o. F ) : A -1-1-onto-> D <-> ( F : A -1-1-onto-> C /\ G : C -1-1-onto-> D ) ) ) |