This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one function with a domain with at least three different elements in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f13dfv.a | |- A = { X , Y , Z } |
|
| Assertion | f13dfv | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( F : A -1-1-> B <-> ( F : A --> B /\ ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f13dfv.a | |- A = { X , Y , Z } |
|
| 2 | dff14b | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) ) ) |
|
| 3 | 1 | raleqi | |- ( A. x e. A A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> A. x e. { X , Y , Z } A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) ) |
| 4 | sneq | |- ( x = X -> { x } = { X } ) |
|
| 5 | 4 | difeq2d | |- ( x = X -> ( A \ { x } ) = ( A \ { X } ) ) |
| 6 | fveq2 | |- ( x = X -> ( F ` x ) = ( F ` X ) ) |
|
| 7 | 6 | neeq1d | |- ( x = X -> ( ( F ` x ) =/= ( F ` y ) <-> ( F ` X ) =/= ( F ` y ) ) ) |
| 8 | 5 7 | raleqbidv | |- ( x = X -> ( A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) ) ) |
| 9 | sneq | |- ( x = Y -> { x } = { Y } ) |
|
| 10 | 9 | difeq2d | |- ( x = Y -> ( A \ { x } ) = ( A \ { Y } ) ) |
| 11 | fveq2 | |- ( x = Y -> ( F ` x ) = ( F ` Y ) ) |
|
| 12 | 11 | neeq1d | |- ( x = Y -> ( ( F ` x ) =/= ( F ` y ) <-> ( F ` Y ) =/= ( F ` y ) ) ) |
| 13 | 10 12 | raleqbidv | |- ( x = Y -> ( A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) ) ) |
| 14 | sneq | |- ( x = Z -> { x } = { Z } ) |
|
| 15 | 14 | difeq2d | |- ( x = Z -> ( A \ { x } ) = ( A \ { Z } ) ) |
| 16 | fveq2 | |- ( x = Z -> ( F ` x ) = ( F ` Z ) ) |
|
| 17 | 16 | neeq1d | |- ( x = Z -> ( ( F ` x ) =/= ( F ` y ) <-> ( F ` Z ) =/= ( F ` y ) ) ) |
| 18 | 15 17 | raleqbidv | |- ( x = Z -> ( A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) ) ) |
| 19 | 8 13 18 | raltpg | |- ( ( X e. U /\ Y e. V /\ Z e. W ) -> ( A. x e. { X , Y , Z } A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> ( A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) /\ A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) /\ A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) ) ) ) |
| 20 | 19 | adantr | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. x e. { X , Y , Z } A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> ( A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) /\ A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) /\ A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) ) ) ) |
| 21 | 1 | difeq1i | |- ( A \ { X } ) = ( { X , Y , Z } \ { X } ) |
| 22 | tprot | |- { X , Y , Z } = { Y , Z , X } |
|
| 23 | 22 | difeq1i | |- ( { X , Y , Z } \ { X } ) = ( { Y , Z , X } \ { X } ) |
| 24 | necom | |- ( X =/= Y <-> Y =/= X ) |
|
| 25 | necom | |- ( X =/= Z <-> Z =/= X ) |
|
| 26 | 24 25 | anbi12i | |- ( ( X =/= Y /\ X =/= Z ) <-> ( Y =/= X /\ Z =/= X ) ) |
| 27 | 26 | biimpi | |- ( ( X =/= Y /\ X =/= Z ) -> ( Y =/= X /\ Z =/= X ) ) |
| 28 | 27 | 3adant3 | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( Y =/= X /\ Z =/= X ) ) |
| 29 | diftpsn3 | |- ( ( Y =/= X /\ Z =/= X ) -> ( { Y , Z , X } \ { X } ) = { Y , Z } ) |
|
| 30 | 28 29 | syl | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( { Y , Z , X } \ { X } ) = { Y , Z } ) |
| 31 | 23 30 | eqtrid | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( { X , Y , Z } \ { X } ) = { Y , Z } ) |
| 32 | 21 31 | eqtrid | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( A \ { X } ) = { Y , Z } ) |
| 33 | 32 | adantl | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A \ { X } ) = { Y , Z } ) |
| 34 | 33 | raleqdv | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) <-> A. y e. { Y , Z } ( F ` X ) =/= ( F ` y ) ) ) |
| 35 | fveq2 | |- ( y = Y -> ( F ` y ) = ( F ` Y ) ) |
|
| 36 | 35 | neeq2d | |- ( y = Y -> ( ( F ` X ) =/= ( F ` y ) <-> ( F ` X ) =/= ( F ` Y ) ) ) |
| 37 | fveq2 | |- ( y = Z -> ( F ` y ) = ( F ` Z ) ) |
|
| 38 | 37 | neeq2d | |- ( y = Z -> ( ( F ` X ) =/= ( F ` y ) <-> ( F ` X ) =/= ( F ` Z ) ) ) |
| 39 | 36 38 | ralprg | |- ( ( Y e. V /\ Z e. W ) -> ( A. y e. { Y , Z } ( F ` X ) =/= ( F ` y ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) ) ) |
| 40 | 39 | 3adant1 | |- ( ( X e. U /\ Y e. V /\ Z e. W ) -> ( A. y e. { Y , Z } ( F ` X ) =/= ( F ` y ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) ) ) |
| 41 | 40 | adantr | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. { Y , Z } ( F ` X ) =/= ( F ` y ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) ) ) |
| 42 | 34 41 | bitrd | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) ) ) |
| 43 | 1 | difeq1i | |- ( A \ { Y } ) = ( { X , Y , Z } \ { Y } ) |
| 44 | tpcomb | |- { X , Y , Z } = { X , Z , Y } |
|
| 45 | 44 | difeq1i | |- ( { X , Y , Z } \ { Y } ) = ( { X , Z , Y } \ { Y } ) |
| 46 | necom | |- ( Y =/= Z <-> Z =/= Y ) |
|
| 47 | 46 | biimpi | |- ( Y =/= Z -> Z =/= Y ) |
| 48 | 47 | anim2i | |- ( ( X =/= Y /\ Y =/= Z ) -> ( X =/= Y /\ Z =/= Y ) ) |
| 49 | 48 | 3adant2 | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( X =/= Y /\ Z =/= Y ) ) |
| 50 | diftpsn3 | |- ( ( X =/= Y /\ Z =/= Y ) -> ( { X , Z , Y } \ { Y } ) = { X , Z } ) |
|
| 51 | 49 50 | syl | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( { X , Z , Y } \ { Y } ) = { X , Z } ) |
| 52 | 45 51 | eqtrid | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( { X , Y , Z } \ { Y } ) = { X , Z } ) |
| 53 | 43 52 | eqtrid | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( A \ { Y } ) = { X , Z } ) |
| 54 | 53 | adantl | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A \ { Y } ) = { X , Z } ) |
| 55 | 54 | raleqdv | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) <-> A. y e. { X , Z } ( F ` Y ) =/= ( F ` y ) ) ) |
| 56 | fveq2 | |- ( y = X -> ( F ` y ) = ( F ` X ) ) |
|
| 57 | 56 | neeq2d | |- ( y = X -> ( ( F ` Y ) =/= ( F ` y ) <-> ( F ` Y ) =/= ( F ` X ) ) ) |
| 58 | 37 | neeq2d | |- ( y = Z -> ( ( F ` Y ) =/= ( F ` y ) <-> ( F ` Y ) =/= ( F ` Z ) ) ) |
| 59 | 57 58 | ralprg | |- ( ( X e. U /\ Z e. W ) -> ( A. y e. { X , Z } ( F ` Y ) =/= ( F ` y ) <-> ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 60 | 59 | 3adant2 | |- ( ( X e. U /\ Y e. V /\ Z e. W ) -> ( A. y e. { X , Z } ( F ` Y ) =/= ( F ` y ) <-> ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 61 | 60 | adantr | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. { X , Z } ( F ` Y ) =/= ( F ` y ) <-> ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 62 | 55 61 | bitrd | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) <-> ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 63 | 1 | difeq1i | |- ( A \ { Z } ) = ( { X , Y , Z } \ { Z } ) |
| 64 | diftpsn3 | |- ( ( X =/= Z /\ Y =/= Z ) -> ( { X , Y , Z } \ { Z } ) = { X , Y } ) |
|
| 65 | 64 | 3adant1 | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( { X , Y , Z } \ { Z } ) = { X , Y } ) |
| 66 | 63 65 | eqtrid | |- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( A \ { Z } ) = { X , Y } ) |
| 67 | 66 | adantl | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A \ { Z } ) = { X , Y } ) |
| 68 | 67 | raleqdv | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) <-> A. y e. { X , Y } ( F ` Z ) =/= ( F ` y ) ) ) |
| 69 | 56 | neeq2d | |- ( y = X -> ( ( F ` Z ) =/= ( F ` y ) <-> ( F ` Z ) =/= ( F ` X ) ) ) |
| 70 | 35 | neeq2d | |- ( y = Y -> ( ( F ` Z ) =/= ( F ` y ) <-> ( F ` Z ) =/= ( F ` Y ) ) ) |
| 71 | 69 70 | ralprg | |- ( ( X e. U /\ Y e. V ) -> ( A. y e. { X , Y } ( F ` Z ) =/= ( F ` y ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) |
| 72 | 71 | 3adant3 | |- ( ( X e. U /\ Y e. V /\ Z e. W ) -> ( A. y e. { X , Y } ( F ` Z ) =/= ( F ` y ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) |
| 73 | 72 | adantr | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. { X , Y } ( F ` Z ) =/= ( F ` y ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) |
| 74 | 68 73 | bitrd | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) |
| 75 | 42 62 74 | 3anbi123d | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( ( A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) /\ A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) /\ A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) ) <-> ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) /\ ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) ) |
| 76 | ancom | |- ( ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) <-> ( ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) ) ) |
|
| 77 | 76 | 3anbi2i | |- ( ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) /\ ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) <-> ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) /\ ( ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) |
| 78 | 3an6 | |- ( ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) /\ ( ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) <-> ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Z ) =/= ( F ` X ) ) /\ ( ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) |
|
| 79 | 3anrot | |- ( ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Z ) =/= ( F ` X ) ) ) |
|
| 80 | 79 | bicomi | |- ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Z ) =/= ( F ` X ) ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 81 | necom | |- ( ( F ` X ) =/= ( F ` Z ) <-> ( F ` Z ) =/= ( F ` X ) ) |
|
| 82 | necom | |- ( ( F ` Y ) =/= ( F ` X ) <-> ( F ` X ) =/= ( F ` Y ) ) |
|
| 83 | necom | |- ( ( F ` Z ) =/= ( F ` Y ) <-> ( F ` Y ) =/= ( F ` Z ) ) |
|
| 84 | 81 82 83 | 3anbi123i | |- ( ( ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 85 | 80 84 | anbi12i | |- ( ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Z ) =/= ( F ` X ) ) /\ ( ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) <-> ( ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 86 | anidm | |- ( ( ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
|
| 87 | 3ancoma | |- ( ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Z ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
|
| 88 | necom | |- ( ( F ` Z ) =/= ( F ` X ) <-> ( F ` X ) =/= ( F ` Z ) ) |
|
| 89 | 88 | 3anbi2i | |- ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Z ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 90 | 87 89 | bitri | |- ( ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 91 | 85 86 90 | 3bitri | |- ( ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Z ) =/= ( F ` X ) ) /\ ( ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 92 | 77 78 91 | 3bitri | |- ( ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) /\ ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 93 | 75 92 | bitrdi | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( ( A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) /\ A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) /\ A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 94 | 20 93 | bitrd | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. x e. { X , Y , Z } A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 95 | 3 94 | bitrid | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. x e. A A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 96 | 95 | anbi2d | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( ( F : A --> B /\ A. x e. A A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) ) <-> ( F : A --> B /\ ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) ) |
| 97 | 2 96 | bitrid | |- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( F : A -1-1-> B <-> ( F : A --> B /\ ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) ) |