This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between a mapping and an onto mapping. Figure 38 of Enderton p. 145. (Contributed by NM, 10-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f11o.1 | |- F e. _V |
|
| Assertion | ffoss | |- ( F : A --> B <-> E. x ( F : A -onto-> x /\ x C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f11o.1 | |- F e. _V |
|
| 2 | df-f | |- ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) ) |
|
| 3 | dffn4 | |- ( F Fn A <-> F : A -onto-> ran F ) |
|
| 4 | 3 | anbi1i | |- ( ( F Fn A /\ ran F C_ B ) <-> ( F : A -onto-> ran F /\ ran F C_ B ) ) |
| 5 | 2 4 | bitri | |- ( F : A --> B <-> ( F : A -onto-> ran F /\ ran F C_ B ) ) |
| 6 | 1 | rnex | |- ran F e. _V |
| 7 | foeq3 | |- ( x = ran F -> ( F : A -onto-> x <-> F : A -onto-> ran F ) ) |
|
| 8 | sseq1 | |- ( x = ran F -> ( x C_ B <-> ran F C_ B ) ) |
|
| 9 | 7 8 | anbi12d | |- ( x = ran F -> ( ( F : A -onto-> x /\ x C_ B ) <-> ( F : A -onto-> ran F /\ ran F C_ B ) ) ) |
| 10 | 6 9 | spcev | |- ( ( F : A -onto-> ran F /\ ran F C_ B ) -> E. x ( F : A -onto-> x /\ x C_ B ) ) |
| 11 | 5 10 | sylbi | |- ( F : A --> B -> E. x ( F : A -onto-> x /\ x C_ B ) ) |
| 12 | fof | |- ( F : A -onto-> x -> F : A --> x ) |
|
| 13 | fss | |- ( ( F : A --> x /\ x C_ B ) -> F : A --> B ) |
|
| 14 | 12 13 | sylan | |- ( ( F : A -onto-> x /\ x C_ B ) -> F : A --> B ) |
| 15 | 14 | exlimiv | |- ( E. x ( F : A -onto-> x /\ x C_ B ) -> F : A --> B ) |
| 16 | 11 15 | impbii | |- ( F : A --> B <-> E. x ( F : A -onto-> x /\ x C_ B ) ) |