This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of converse R -coset and converse S -coset when R and S are relations. (Contributed by Peter Mazsa, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releccnveq | |- ( ( Rel R /\ Rel S ) -> ( [ A ] `' R = [ B ] `' S <-> A. x ( x R A <-> x S B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq | |- ( [ A ] `' R = [ B ] `' S <-> A. x ( x e. [ A ] `' R <-> x e. [ B ] `' S ) ) |
|
| 2 | releleccnv | |- ( Rel R -> ( x e. [ A ] `' R <-> x R A ) ) |
|
| 3 | releleccnv | |- ( Rel S -> ( x e. [ B ] `' S <-> x S B ) ) |
|
| 4 | 2 3 | bi2bian9 | |- ( ( Rel R /\ Rel S ) -> ( ( x e. [ A ] `' R <-> x e. [ B ] `' S ) <-> ( x R A <-> x S B ) ) ) |
| 5 | 4 | albidv | |- ( ( Rel R /\ Rel S ) -> ( A. x ( x e. [ A ] `' R <-> x e. [ B ] `' S ) <-> A. x ( x R A <-> x S B ) ) ) |
| 6 | 1 5 | bitrid | |- ( ( Rel R /\ Rel S ) -> ( [ A ] `' R = [ B ] `' S <-> A. x ( x R A <-> x S B ) ) ) |