This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subset relation and subclass relationship ( df-ss ) are the same, that is, ( AS B <-> A C B ) when B is a set. (Contributed by Peter Mazsa, 31-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brssr | |- ( B e. V -> ( A _S B <-> A C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssr | |- Rel _S |
|
| 2 | 1 | brrelex1i | |- ( A _S B -> A e. _V ) |
| 3 | 2 | adantl | |- ( ( B e. V /\ A _S B ) -> A e. _V ) |
| 4 | simpl | |- ( ( B e. V /\ A _S B ) -> B e. V ) |
|
| 5 | 3 4 | jca | |- ( ( B e. V /\ A _S B ) -> ( A e. _V /\ B e. V ) ) |
| 6 | ssexg | |- ( ( A C_ B /\ B e. V ) -> A e. _V ) |
|
| 7 | simpr | |- ( ( A C_ B /\ B e. V ) -> B e. V ) |
|
| 8 | 6 7 | jca | |- ( ( A C_ B /\ B e. V ) -> ( A e. _V /\ B e. V ) ) |
| 9 | 8 | ancoms | |- ( ( B e. V /\ A C_ B ) -> ( A e. _V /\ B e. V ) ) |
| 10 | sseq1 | |- ( x = A -> ( x C_ y <-> A C_ y ) ) |
|
| 11 | sseq2 | |- ( y = B -> ( A C_ y <-> A C_ B ) ) |
|
| 12 | df-ssr | |- _S = { <. x , y >. | x C_ y } |
|
| 13 | 10 11 12 | brabg | |- ( ( A e. _V /\ B e. V ) -> ( A _S B <-> A C_ B ) ) |
| 14 | 5 9 13 | pm5.21nd | |- ( B e. V -> ( A _S B <-> A C_ B ) ) |