This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition allowing to swap an existential quantifier and a unique existential quantifier. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2euswapv when possible. (Contributed by NM, 10-Apr-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2euswap | |- ( A. x E* y ph -> ( E! x E. y ph -> E! y E. x ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excomim | |- ( E. x E. y ph -> E. y E. x ph ) |
|
| 2 | 1 | a1i | |- ( A. x E* y ph -> ( E. x E. y ph -> E. y E. x ph ) ) |
| 3 | 2moswap | |- ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ph ) ) |
|
| 4 | 2 3 | anim12d | |- ( A. x E* y ph -> ( ( E. x E. y ph /\ E* x E. y ph ) -> ( E. y E. x ph /\ E* y E. x ph ) ) ) |
| 5 | df-eu | |- ( E! x E. y ph <-> ( E. x E. y ph /\ E* x E. y ph ) ) |
|
| 6 | df-eu | |- ( E! y E. x ph <-> ( E. y E. x ph /\ E* y E. x ph ) ) |
|
| 7 | 4 5 6 | 3imtr4g | |- ( A. x E* y ph -> ( E! x E. y ph -> E! y E. x ph ) ) |